Deterministic Markov Nash equilibria for potential discrete-time stochastic games

Alejandra Fonseca-Morales

Kybernetika (2022)

  • Volume: 58, Issue: 2, page 163-179
  • ISSN: 0023-5954

Abstract

top
In this paper, we study the problem of finding deterministic (also known as feedback or closed-loop) Markov Nash equilibria for a class of discrete-time stochastic games. In order to establish our results, we develop a potential game approach based on the dynamic programming technique. The identified potential stochastic games have Borel state and action spaces and possibly unbounded nondifferentiable cost-per-stage functions. In particular, the team (or coordination) stochastic games and the stochastic games with an action independent transition law are covered.

How to cite

top

Fonseca-Morales, Alejandra. "Deterministic Markov Nash equilibria for potential discrete-time stochastic games." Kybernetika 58.2 (2022): 163-179. <http://eudml.org/doc/298928>.

@article{Fonseca2022,
abstract = {In this paper, we study the problem of finding deterministic (also known as feedback or closed-loop) Markov Nash equilibria for a class of discrete-time stochastic games. In order to establish our results, we develop a potential game approach based on the dynamic programming technique. The identified potential stochastic games have Borel state and action spaces and possibly unbounded nondifferentiable cost-per-stage functions. In particular, the team (or coordination) stochastic games and the stochastic games with an action independent transition law are covered.},
author = {Fonseca-Morales, Alejandra},
journal = {Kybernetika},
keywords = {stochastic games; optimal control; potential approach; dynamic programming},
language = {eng},
number = {2},
pages = {163-179},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Deterministic Markov Nash equilibria for potential discrete-time stochastic games},
url = {http://eudml.org/doc/298928},
volume = {58},
year = {2022},
}

TY - JOUR
AU - Fonseca-Morales, Alejandra
TI - Deterministic Markov Nash equilibria for potential discrete-time stochastic games
JO - Kybernetika
PY - 2022
PB - Institute of Information Theory and Automation AS CR
VL - 58
IS - 2
SP - 163
EP - 179
AB - In this paper, we study the problem of finding deterministic (also known as feedback or closed-loop) Markov Nash equilibria for a class of discrete-time stochastic games. In order to establish our results, we develop a potential game approach based on the dynamic programming technique. The identified potential stochastic games have Borel state and action spaces and possibly unbounded nondifferentiable cost-per-stage functions. In particular, the team (or coordination) stochastic games and the stochastic games with an action independent transition law are covered.
LA - eng
KW - stochastic games; optimal control; potential approach; dynamic programming
UR - http://eudml.org/doc/298928
ER -

References

top
  1. Dragone, D., Lambertini, L., Leitmann, G., Palestini, A., , Automatica 62 (2015), 134-138. MR3423980DOI
  2. Fleming, W. H., Rishel, R. W., Deterministic and stochastic optimal control., Springer Science and Business Media 1 (2012). MR0454768
  3. Fonseca-Morales, A., Hernández-Lerma, O., , Dyn. Games Appl. 8 (2018), 254-279. MR3784963DOI
  4. Fonseca-Morales, A., Hernández-Lerma, O., , Stochastics 92, (2020), 1125-1138. MR4156004DOI
  5. González-Sánchez, D., Hernández-Lerma, O., Discrete-time Stochastic Control and Dynamic Potential Games: The Euler-equation Approach., Springer, New York 2013. MR3114623
  6. Gopalakrishnan, R., Marden, J.Ŕ., Wierman, A., , Math. Oper. Res. 39 (2014), 1252-1296. MR3279766DOI
  7. Hernández-Lerma, O., Lasserre, J. B., Discrete-time Markov Control Processes: Basic Optimality Criteria., Springer-Verlag, New York 1996. MR1363487
  8. Hernández-Lerma, O., Lasserre, J. B., Further Topics on Discrete-Time Markov Control Processes., Springer-Verlag, New York 1999. Zbl0928.93002MR1697198
  9. Luque-Vázquez, F., Minjárez-Sosa, J. A., , Kybernetika 53 (2017), 4, 694-716. MR3730259DOI
  10. Mazalov, V. V., Rettieva, A. N., Avrachenkov, K. E., , Autom. Remote Control 78 (2017), 1537-1544. MR3702566DOI
  11. Mguni, D., Stochastic potential games. 
  12. Minjárez-Sosa, J. A., , Springer Nature, Cham 2020. MR4292281DOI
  13. Monderer, D., Shapley, L. S., , Game Econ. Behav. 14 (1996), 124-143. MR1393599DOI
  14. Potters, J. A. M., Raghavan, T. E. S., Tijs, S. H., , Adv. Dyn. Games Appl. Birkhauser, Boston 2009, pp. 433-444. MR2521681DOI
  15. Robles-Aguilar, A. D., González-Sánchez, D., Minjárez-Sosa, J. A., , In: Modern Trends in Controlled Stochastic Processes, Theory and Applications, V.III, (A. Piunovskiy and Y. Zhang Eds.), Springer Nature, Cham 2021. pp. 148-165. MR4437149DOI
  16. Rosenthal, R. W., , Int. J. Game Theory 2 (1973), 65-67. MR0319584DOI
  17. Slade, E. M., , J. Ind. Econ. 42 (1994), 45-61. DOI
  18. Macua, S. V., Zazo, S., Zazo, J., Learning parametric closed-Loop policies for Markov potential games. 
  19. Zazo, S., Zazo, J., Sánchez-Fernández, M., A control theoretic approach to solve a constrained uplink power dynamic game., In: IEEE, 22nd European Signal Processing Conference on (EUSIPCO) 2014, pp. 401-405. 
  20. Zazo, S., Valcarcel, S., Sánchez-Fernández, M., Zazo, J., , IEEE Trans. Signal Proc. 64 (2016), 3806-3821. MR3515718DOI

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.