Deterministic Markov Nash equilibria for potential discrete-time stochastic games
Kybernetika (2022)
- Volume: 58, Issue: 2, page 163-179
- ISSN: 0023-5954
Access Full Article
topAbstract
topHow to cite
topFonseca-Morales, Alejandra. "Deterministic Markov Nash equilibria for potential discrete-time stochastic games." Kybernetika 58.2 (2022): 163-179. <http://eudml.org/doc/298928>.
@article{Fonseca2022,
abstract = {In this paper, we study the problem of finding deterministic (also known as feedback or closed-loop) Markov Nash equilibria for a class of discrete-time stochastic games. In order to establish our results, we develop a potential game approach based on the dynamic programming technique. The identified potential stochastic games have Borel state and action spaces and possibly unbounded nondifferentiable cost-per-stage functions. In particular, the team (or coordination) stochastic games and the stochastic games with an action independent transition law are covered.},
author = {Fonseca-Morales, Alejandra},
journal = {Kybernetika},
keywords = {stochastic games; optimal control; potential approach; dynamic programming},
language = {eng},
number = {2},
pages = {163-179},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Deterministic Markov Nash equilibria for potential discrete-time stochastic games},
url = {http://eudml.org/doc/298928},
volume = {58},
year = {2022},
}
TY - JOUR
AU - Fonseca-Morales, Alejandra
TI - Deterministic Markov Nash equilibria for potential discrete-time stochastic games
JO - Kybernetika
PY - 2022
PB - Institute of Information Theory and Automation AS CR
VL - 58
IS - 2
SP - 163
EP - 179
AB - In this paper, we study the problem of finding deterministic (also known as feedback or closed-loop) Markov Nash equilibria for a class of discrete-time stochastic games. In order to establish our results, we develop a potential game approach based on the dynamic programming technique. The identified potential stochastic games have Borel state and action spaces and possibly unbounded nondifferentiable cost-per-stage functions. In particular, the team (or coordination) stochastic games and the stochastic games with an action independent transition law are covered.
LA - eng
KW - stochastic games; optimal control; potential approach; dynamic programming
UR - http://eudml.org/doc/298928
ER -
References
top- Dragone, D., Lambertini, L., Leitmann, G., Palestini, A., , Automatica 62 (2015), 134-138. MR3423980DOI
- Fleming, W. H., Rishel, R. W., Deterministic and stochastic optimal control., Springer Science and Business Media 1 (2012). MR0454768
- Fonseca-Morales, A., Hernández-Lerma, O., , Dyn. Games Appl. 8 (2018), 254-279. MR3784963DOI
- Fonseca-Morales, A., Hernández-Lerma, O., , Stochastics 92, (2020), 1125-1138. MR4156004DOI
- González-Sánchez, D., Hernández-Lerma, O., Discrete-time Stochastic Control and Dynamic Potential Games: The Euler-equation Approach., Springer, New York 2013. MR3114623
- Gopalakrishnan, R., Marden, J.Ŕ., Wierman, A., , Math. Oper. Res. 39 (2014), 1252-1296. MR3279766DOI
- Hernández-Lerma, O., Lasserre, J. B., Discrete-time Markov Control Processes: Basic Optimality Criteria., Springer-Verlag, New York 1996. MR1363487
- Hernández-Lerma, O., Lasserre, J. B., Further Topics on Discrete-Time Markov Control Processes., Springer-Verlag, New York 1999. Zbl0928.93002MR1697198
- Luque-Vázquez, F., Minjárez-Sosa, J. A., , Kybernetika 53 (2017), 4, 694-716. MR3730259DOI
- Mazalov, V. V., Rettieva, A. N., Avrachenkov, K. E., , Autom. Remote Control 78 (2017), 1537-1544. MR3702566DOI
- Mguni, D., Stochastic potential games.
- Minjárez-Sosa, J. A., , Springer Nature, Cham 2020. MR4292281DOI
- Monderer, D., Shapley, L. S., , Game Econ. Behav. 14 (1996), 124-143. MR1393599DOI
- Potters, J. A. M., Raghavan, T. E. S., Tijs, S. H., , Adv. Dyn. Games Appl. Birkhauser, Boston 2009, pp. 433-444. MR2521681DOI
- Robles-Aguilar, A. D., González-Sánchez, D., Minjárez-Sosa, J. A., , In: Modern Trends in Controlled Stochastic Processes, Theory and Applications, V.III, (A. Piunovskiy and Y. Zhang Eds.), Springer Nature, Cham 2021. pp. 148-165. MR4437149DOI
- Rosenthal, R. W., , Int. J. Game Theory 2 (1973), 65-67. MR0319584DOI
- Slade, E. M., , J. Ind. Econ. 42 (1994), 45-61. DOI
- Macua, S. V., Zazo, S., Zazo, J., Learning parametric closed-Loop policies for Markov potential games.
- Zazo, S., Zazo, J., Sánchez-Fernández, M., A control theoretic approach to solve a constrained uplink power dynamic game., In: IEEE, 22nd European Signal Processing Conference on (EUSIPCO) 2014, pp. 401-405.
- Zazo, S., Valcarcel, S., Sánchez-Fernández, M., Zazo, J., , IEEE Trans. Signal Proc. 64 (2016), 3806-3821. MR3515718DOI
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.