On topologically distinct infinite families of exact Lagrangian fillings

Roman Golovko

Archivum Mathematicum (2022)

  • Volume: 058, Issue: 5, page 287-293
  • ISSN: 0044-8753

Abstract

top
In this note we construct examples of closed connected Legendrian submanifolds in high dimensional contact vector space that admit an arbitrary finite number of topologically distinct infinite families of diffeomorphic, but not Hamiltonian isotopic exact Lagrangian fillings.

How to cite

top

Golovko, Roman. "On topologically distinct infinite families of exact Lagrangian fillings." Archivum Mathematicum 058.5 (2022): 287-293. <http://eudml.org/doc/298936>.

@article{Golovko2022,
abstract = {In this note we construct examples of closed connected Legendrian submanifolds in high dimensional contact vector space that admit an arbitrary finite number of topologically distinct infinite families of diffeomorphic, but not Hamiltonian isotopic exact Lagrangian fillings.},
author = {Golovko, Roman},
journal = {Archivum Mathematicum},
keywords = {polyfillability; Legendrian submanifold; exact Lagrangian filling},
language = {eng},
number = {5},
pages = {287-293},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {On topologically distinct infinite families of exact Lagrangian fillings},
url = {http://eudml.org/doc/298936},
volume = {058},
year = {2022},
}

TY - JOUR
AU - Golovko, Roman
TI - On topologically distinct infinite families of exact Lagrangian fillings
JO - Archivum Mathematicum
PY - 2022
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 058
IS - 5
SP - 287
EP - 293
AB - In this note we construct examples of closed connected Legendrian submanifolds in high dimensional contact vector space that admit an arbitrary finite number of topologically distinct infinite families of diffeomorphic, but not Hamiltonian isotopic exact Lagrangian fillings.
LA - eng
KW - polyfillability; Legendrian submanifold; exact Lagrangian filling
UR - http://eudml.org/doc/298936
ER -

References

top
  1. An, B.H., Bae, Y., Lee, E., Lagrangian fillings for Legendrian links of affine type, preprint 2021, arXiv:2107.04283. 
  2. An, B.H., Bae, Y., Lee, E., Lagrangian fillings for Legendrian links of finite type, preprint 2021, arXiv:2101.01943. 
  3. Cao, C., Gallup, N., Hayden, K., Sabloff, J.M., 10.4310/MRL.2014.v21.n1.a7, Math. Res. Lett. 21 (1) (2014), 85–99. (2014) MR3247041DOI10.4310/MRL.2014.v21.n1.a7
  4. Capovilla-Searle, O., Infinitely many planar fillings and symplectic Milnor fibers, preprint 2022, arXiv:2201.03081. 
  5. Casals, R., Gao, H., 10.4007/annals.2022.195.1.3, Ann. of Math. 195 (1) (2022), 207–249. (2022) MR4358415DOI10.4007/annals.2022.195.1.3
  6. Casals, R., Ng, L., 10.1112/topo.12264, J. Topol. 15 (4) (2022), 1927–2016. (2022) DOI10.1112/topo.12264
  7. Casals, R., Zaslow, E., Legendrian weaves, preprint 2020, arXiv:2007.04943. 
  8. Chantraine, B., 10.2140/agt.2010.10.63, Algebr. Geom. Topol. 10 (2010), 63–85. (2010) MR2580429DOI10.2140/agt.2010.10.63
  9. Chantraine, B., Rizell, G. Dimitroglou, Ghiggini, P., Golovko, R., 10.4310/jdg/1583377213, J. Differential Geom. 114 (3) (2020), 393–465. (2020) MR4072203DOI10.4310/jdg/1583377213
  10. Dimitroglou Rizell, G., 10.4310/JSG.2016.v14.n3.a6, J. Symplectic Geom. 14 (3) (2016), 811–901. (2016) MR3548486DOI10.4310/JSG.2016.v14.n3.a6
  11. Ekholm, T., 10.2140/gt.2007.11.1083, Geom. Topol. 11 (2007), 1083–1224. (2007) MR2326943DOI10.2140/gt.2007.11.1083
  12. Ekholm, T., 10.4171/JEMS/126, J. Eur. Math. Soc. 10 (3) (2008), 641–704. (2008) MR2421157DOI10.4171/JEMS/126
  13. Ekholm, T., Etnyre, J., Sullivan, M., 10.4310/jdg/1143644313, J. Differential Geom. 71 (2005), 85–128. (2005) MR2191769DOI10.4310/jdg/1143644313
  14. Ekholm, T., Honda, K., Kálmán, T., 10.4171/JEMS/650, J. Eur. Math. Soc. (JEMS) 18 (11) (2016), 2627–2689. (2016) MR3562353DOI10.4171/JEMS/650
  15. Eliashberg, Y., Givental, A., Hofer, H., Introduction to symplectic field theory, Geom. Funct. Anal. Special Volume 10 (2000), 560–673. (2000) MR1826267
  16. Gao, H., Shen, L., Weng, D., Augmentations, fillings, and clusters, preprint 2020, arXiv:2008.10793. 
  17. Gao, H., Shen, L., Weng, D., Positive braid links with infinitely many fillings, preprint 2020, arXiv:2009.00499. 
  18. Golovko, R., 10.1112/blms/bdt091, Bull. Lond. Math. Soc. 46 (2) (2014), 258–268. (2014) MR3194745DOI10.1112/blms/bdt091
  19. Golovko, R., 10.2140/pjm.2022.317.143, Pacific J. Math. 317 (1) (2022), 143–152. (2022) MR4440942DOI10.2140/pjm.2022.317.143
  20. Karlsson, C., 10.4171/QT/132, Quantum Topol. 11 (1) (2020), 1–54. (2020) MR4071329DOI10.4171/QT/132
  21. Pan, Y., 10.2140/agt.2017.17.1813, Algebr. Geom. Topol. 17 (3) (2017), 1813–1870. (2017) MR3677941DOI10.2140/agt.2017.17.1813

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.