A review of Lie superalgebra cohomology for pseudoforms
Archivum Mathematicum (2022)
- Volume: 058, Issue: 5, page 269-286
- ISSN: 0044-8753
Access Full Article
topAbstract
topHow to cite
topCremonini, Carlo Alberto. "A review of Lie superalgebra cohomology for pseudoforms." Archivum Mathematicum 058.5 (2022): 269-286. <http://eudml.org/doc/298938>.
@article{Cremonini2022,
abstract = {This note is based on a short talk presented at the “42nd Winter School Geometry and Physics” held in Srni, Czech Republic, January 15th–22nd 2022. We review the notion of Lie superalgebra cohomology and extend it to different form complexes, typical of the superalgebraic setting. In particular, we introduce pseudoforms as infinite-dimensional modules related to sub-superalgebras. We then show how to extend the Koszul-Hochschild-Serre spectral sequence for pseudoforms as a computational method to determine the cohomology groups induced by sub-superalgebras. In particular, we show as an example the case of $\mathfrak \{osp\}(1\mid 4)$ and choose $\mathfrak \{osp\}(1\mid 2) \times \mathfrak \{sp\} (2)$ as sub-algebra. We finally comment on some physical applications of such new cohomology classes related to super-branes. The note is a compact version of [10].},
author = {Cremonini, Carlo Alberto},
journal = {Archivum Mathematicum},
keywords = {Lie superalgebras; cohomology; pseudoforms; integral forms; infinite-dimensional representations},
language = {eng},
number = {5},
pages = {269-286},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {A review of Lie superalgebra cohomology for pseudoforms},
url = {http://eudml.org/doc/298938},
volume = {058},
year = {2022},
}
TY - JOUR
AU - Cremonini, Carlo Alberto
TI - A review of Lie superalgebra cohomology for pseudoforms
JO - Archivum Mathematicum
PY - 2022
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 058
IS - 5
SP - 269
EP - 286
AB - This note is based on a short talk presented at the “42nd Winter School Geometry and Physics” held in Srni, Czech Republic, January 15th–22nd 2022. We review the notion of Lie superalgebra cohomology and extend it to different form complexes, typical of the superalgebraic setting. In particular, we introduce pseudoforms as infinite-dimensional modules related to sub-superalgebras. We then show how to extend the Koszul-Hochschild-Serre spectral sequence for pseudoforms as a computational method to determine the cohomology groups induced by sub-superalgebras. In particular, we show as an example the case of $\mathfrak {osp}(1\mid 4)$ and choose $\mathfrak {osp}(1\mid 2) \times \mathfrak {sp} (2)$ as sub-algebra. We finally comment on some physical applications of such new cohomology classes related to super-branes. The note is a compact version of [10].
LA - eng
KW - Lie superalgebras; cohomology; pseudoforms; integral forms; infinite-dimensional representations
UR - http://eudml.org/doc/298938
ER -
References
top- Achúcarro, A., Evans, J.M., Townsend, P.K., Wiltshire, D.L., 10.1016/0370-2693(87)90896-3, Phys. Lett. B 198 (4) (1987), 441–446. (1987) MR0917433DOI10.1016/0370-2693(87)90896-3
- Baranov, M.A., Schwarz, A.S., Multiloop contribution to string theory, JETP Lett. 42 (1985), 419–421. (1985) MR0875755
- Belopolsky, A., New geometrical approach to superstrings, [arXiv:hep-th/9703183 [hep-th]].
- Bernstein, I.N., Leites, D.A., Integral forms and the Stokes formula on supermanifolds, Funkt. Anal. Pril. 11 (1977), 55. (1977) MR0647158
- Cacciatori, S.L., Noja, S., Re, R., The unifying double complex on supermanifolds, Doc. Math. (2022), 489–518. (2022)
- Castellani, L., D’Auria, R., Fré, P., Supergravity and superstrings: A Geometric perspective, Singapore: World Scientific 1, 2, 3 (1991), 1375–2162. (1991) MR1120024
- Catenacci, R., Cremonini, C.A., Grassi, P.A., Noja, S., Cohomology of Lie superalgebras: Forms, integral forms and coset superspaces, [arXiv:2012.05246 [hep-th]]. MR4037668
- Catenacci, R., Grassi, P.A., Noja, S., 10.1016/j.geomphys.2019.103559, J. Geom. Phys. 148 (2020), 103559. (2020) MR4037668DOI10.1016/j.geomphys.2019.103559
- Chevalley, C., Eilenberg, S., 10.1090/S0002-9947-1948-0024908-8, Trans. Amer. Math. Soc. 63 (1948), 85. (1948) Zbl0031.24803MR0024908DOI10.1090/S0002-9947-1948-0024908-8
- Cremonini, C.A., Grassi, P.A., Generalised cocycles and super p-branes, [arXiv:2206.03394 [hep-th]].
- Cremonini, C.A., Grassi, P.A., 10.1007/JHEP03(2020)043, JHEP 03 (2020), 043. (2020) MR4090094DOI10.1007/JHEP03(2020)043
- Cremonini, C.A., Grassi, P.A., 10.1103/PhysRevD.102.025009, Phys. Rev. D 102 (2) (2020), 025009. (2020) MR4134650DOI10.1103/PhysRevD.102.025009
- Cremonini, C.A., Grassi, P.A., Self-dual forms in supergeometry I: The chiral boson, Nuclear Phys. B 973 (2021), 115596. (2021) MR4335819
- Cremonini, C.A., Grassi, P.A., et alii,, In preparation
- Duff, M.J., The conformal brane-scan: an update, [arXiv:2112.13784 [hep-th]]. MR4447865
- Erler, T., Konopka, S., Sachs, I., Resolving Witten’s superstring field theory, JHEP 12 (2014), 1550018. (2014) MR3214038
- Fiorenza, D., Sati, H., Schreiber, U., 10.1142/S0219887815500188, Int. J. Geom. Methods Mod. Phys. 12 (2014), 1550018. (2014) MR3305054DOI10.1142/S0219887815500188
- Frappat, L., Sorba, P., Sciarrino, A., Dictionary on Lie Algebras and Superalgebras, Academic Press, 2000. (2000) MR1773773
- Friedan, D., Martinec, E.J., Shenker, S.H., Conformal invariance, supersymmetry and string theory, Nuclear Phys. B 271 (1986), 93–165. (1986) MR0845945
- Fuks, D., Cohomology of infinite-dimensional Lie algebras, Springer, New York, 1986. (1986) Zbl0667.17005MR0874337
- Hochschild, G., Serre, J.P., 10.2307/1969740, Ann. of Math. 57 (2) (1953), 591–603. (1953) MR0054581DOI10.2307/1969740
- Kac, V.G., 10.1016/0001-8708(77)90017-2, Adv. Math. 26 (1977), 8–96. (1977) Zbl0367.17007MR0486011DOI10.1016/0001-8708(77)90017-2
- Koszul, J.L., 10.24033/bsmf.1410, Bull. Soc. Math. France 78 (1950), 65–127. (1950) MR0036511DOI10.24033/bsmf.1410
- Lebedev, A., Leites, D.A., Shereshevskii, I., Lie superalgebra structures in cohomology spaces of Lie algebras with coefficients in the adjoint representation, Amer. Math. Soc. Transl. Ser. 2 213 (2005), 157–172. (2005) MR2140720
- Lehrer, G.I., Zhang, R.B., 10.1007/s00220-016-2731-7, Commun. Math. Phys. 349 (2) (2017), 661–702. (2017) MR3594367DOI10.1007/s00220-016-2731-7
- Lehrer, G.I., Zhang, R.B., 10.1017/nmj.2019.25, Nagoya Math. J. 242 (2021), 52–76. (2021) MR4250733DOI10.1017/nmj.2019.25
- Leites, D.A., 10.1007/BF01018415, Theor. Math. Phys. 52 (1982), 764–766. (1982) MR0683439DOI10.1007/BF01018415
- Manin, Y.I., Gauge field theory and complex geometry, Springer, Berlin, 1988, Translated from the Russian by N. Koblitz and J. R. King. Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 289. (1988) MR0954833
- Noja, S., On the geometry of forms on supermanifolds, [arXiv:2111.12841 [math.AG]].
- Noja, S., Re, R., A note on super Koszul complex and the Berezinian, Ann. Mat. Pura Appl. (4) 201 (2022), 403–421. (2022) MR4375015
- Ogievetskii, O.V., Penkov, I.B., 10.1007/BF01076371, Funct. Anal. Appl. 18 (1984), 68–70. (1984) MR0739100DOI10.1007/BF01076371
- Penkov, I.B., 10.1007/BF02095989, Invent. Math. 71 (1983), 501–512. (1983) MR0695902DOI10.1007/BF02095989
- Scheunert, M., Zhang, R.B., 10.1063/1.532508, J. Math. Phys. 39 (1998), 5024–5061. (1998) MR1643330DOI10.1063/1.532508
- Su, Y., Zhang, R.B., Cohomology of Lie superalgebras and , Proc. London Math. Soc. 94 (2007), 91–136. (2007) MR2293466
- Su, Y., Zhang, R.B., 10.1016/j.jalgebra.2019.11.036, J. Algebra 549 (2020), 1–29. (2020) MR4050665DOI10.1016/j.jalgebra.2019.11.036
- Sullivan, D., 10.1007/BF02684341, Publications Mathématiques de l'IHÉS 47 (1977), 269–331. (1977) MR0646078DOI10.1007/BF02684341
- Verlinde, E.P., Verlinde, H.L., 10.1016/0370-2693(87)91148-8, Phys. Lett. B 192 (1987), 95–102. (1987) MR0895996DOI10.1016/0370-2693(87)91148-8
- Witten, E., 10.4310/PAMQ.2019.v15.n1.a1, Pure Appl. Math. Quart. 15 (1) (2019), 3–56. (2019) MR3946082DOI10.4310/PAMQ.2019.v15.n1.a1
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.