A review of Lie superalgebra cohomology for pseudoforms

Carlo Alberto Cremonini

Archivum Mathematicum (2022)

  • Volume: 058, Issue: 5, page 269-286
  • ISSN: 0044-8753

Abstract

top
This note is based on a short talk presented at the “42nd Winter School Geometry and Physics” held in Srni, Czech Republic, January 15th–22nd 2022. We review the notion of Lie superalgebra cohomology and extend it to different form complexes, typical of the superalgebraic setting. In particular, we introduce pseudoforms as infinite-dimensional modules related to sub-superalgebras. We then show how to extend the Koszul-Hochschild-Serre spectral sequence for pseudoforms as a computational method to determine the cohomology groups induced by sub-superalgebras. In particular, we show as an example the case of 𝔬𝔰𝔭 ( 1 4 ) and choose 𝔬𝔰𝔭 ( 1 2 ) × 𝔰𝔭 ( 2 ) as sub-algebra. We finally comment on some physical applications of such new cohomology classes related to super-branes. The note is a compact version of [10].

How to cite

top

Cremonini, Carlo Alberto. "A review of Lie superalgebra cohomology for pseudoforms." Archivum Mathematicum 058.5 (2022): 269-286. <http://eudml.org/doc/298938>.

@article{Cremonini2022,
abstract = {This note is based on a short talk presented at the “42nd Winter School Geometry and Physics” held in Srni, Czech Republic, January 15th–22nd 2022. We review the notion of Lie superalgebra cohomology and extend it to different form complexes, typical of the superalgebraic setting. In particular, we introduce pseudoforms as infinite-dimensional modules related to sub-superalgebras. We then show how to extend the Koszul-Hochschild-Serre spectral sequence for pseudoforms as a computational method to determine the cohomology groups induced by sub-superalgebras. In particular, we show as an example the case of $\mathfrak \{osp\}(1\mid 4)$ and choose $\mathfrak \{osp\}(1\mid 2) \times \mathfrak \{sp\} (2)$ as sub-algebra. We finally comment on some physical applications of such new cohomology classes related to super-branes. The note is a compact version of [10].},
author = {Cremonini, Carlo Alberto},
journal = {Archivum Mathematicum},
keywords = {Lie superalgebras; cohomology; pseudoforms; integral forms; infinite-dimensional representations},
language = {eng},
number = {5},
pages = {269-286},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {A review of Lie superalgebra cohomology for pseudoforms},
url = {http://eudml.org/doc/298938},
volume = {058},
year = {2022},
}

TY - JOUR
AU - Cremonini, Carlo Alberto
TI - A review of Lie superalgebra cohomology for pseudoforms
JO - Archivum Mathematicum
PY - 2022
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 058
IS - 5
SP - 269
EP - 286
AB - This note is based on a short talk presented at the “42nd Winter School Geometry and Physics” held in Srni, Czech Republic, January 15th–22nd 2022. We review the notion of Lie superalgebra cohomology and extend it to different form complexes, typical of the superalgebraic setting. In particular, we introduce pseudoforms as infinite-dimensional modules related to sub-superalgebras. We then show how to extend the Koszul-Hochschild-Serre spectral sequence for pseudoforms as a computational method to determine the cohomology groups induced by sub-superalgebras. In particular, we show as an example the case of $\mathfrak {osp}(1\mid 4)$ and choose $\mathfrak {osp}(1\mid 2) \times \mathfrak {sp} (2)$ as sub-algebra. We finally comment on some physical applications of such new cohomology classes related to super-branes. The note is a compact version of [10].
LA - eng
KW - Lie superalgebras; cohomology; pseudoforms; integral forms; infinite-dimensional representations
UR - http://eudml.org/doc/298938
ER -

References

top
  1. Achúcarro, A., Evans, J.M., Townsend, P.K., Wiltshire, D.L., 10.1016/0370-2693(87)90896-3, Phys. Lett. B 198 (4) (1987), 441–446. (1987) MR0917433DOI10.1016/0370-2693(87)90896-3
  2. Baranov, M.A., Schwarz, A.S., Multiloop contribution to string theory, JETP Lett. 42 (1985), 419–421. (1985) MR0875755
  3. Belopolsky, A., New geometrical approach to superstrings, [arXiv:hep-th/9703183 [hep-th]]. 
  4. Bernstein, I.N., Leites, D.A., Integral forms and the Stokes formula on supermanifolds, Funkt. Anal. Pril. 11 (1977), 55. (1977) MR0647158
  5. Cacciatori, S.L., Noja, S., Re, R., The unifying double complex on supermanifolds, Doc. Math. (2022), 489–518. (2022) 
  6. Castellani, L., D’Auria, R., Fré, P., Supergravity and superstrings: A Geometric perspective, Singapore: World Scientific 1, 2, 3 (1991), 1375–2162. (1991) MR1120024
  7. Catenacci, R., Cremonini, C.A., Grassi, P.A., Noja, S., Cohomology of Lie superalgebras: Forms, integral forms and coset superspaces, [arXiv:2012.05246 [hep-th]]. MR4037668
  8. Catenacci, R., Grassi, P.A., Noja, S., 10.1016/j.geomphys.2019.103559, J. Geom. Phys. 148 (2020), 103559. (2020) MR4037668DOI10.1016/j.geomphys.2019.103559
  9. Chevalley, C., Eilenberg, S., 10.1090/S0002-9947-1948-0024908-8, Trans. Amer. Math. Soc. 63 (1948), 85. (1948) Zbl0031.24803MR0024908DOI10.1090/S0002-9947-1948-0024908-8
  10. Cremonini, C.A., Grassi, P.A., Generalised cocycles and super p-branes, [arXiv:2206.03394 [hep-th]]. 
  11. Cremonini, C.A., Grassi, P.A., 10.1007/JHEP03(2020)043, JHEP 03 (2020), 043. (2020) MR4090094DOI10.1007/JHEP03(2020)043
  12. Cremonini, C.A., Grassi, P.A., 10.1103/PhysRevD.102.025009, Phys. Rev. D 102 (2) (2020), 025009. (2020) MR4134650DOI10.1103/PhysRevD.102.025009
  13. Cremonini, C.A., Grassi, P.A., Self-dual forms in supergeometry I: The chiral boson, Nuclear Phys. B 973 (2021), 115596. (2021) MR4335819
  14. Cremonini, C.A., Grassi, P.A., et alii,, In preparation 
  15. Duff, M.J., The conformal brane-scan: an update, [arXiv:2112.13784 [hep-th]]. MR4447865
  16. Erler, T., Konopka, S., Sachs, I., Resolving Witten’s superstring field theory, JHEP 12 (2014), 1550018. (2014) MR3214038
  17. Fiorenza, D., Sati, H., Schreiber, U., 10.1142/S0219887815500188, Int. J. Geom. Methods Mod. Phys. 12 (2014), 1550018. (2014) MR3305054DOI10.1142/S0219887815500188
  18. Frappat, L., Sorba, P., Sciarrino, A., Dictionary on Lie Algebras and Superalgebras, Academic Press, 2000. (2000) MR1773773
  19. Friedan, D., Martinec, E.J., Shenker, S.H., Conformal invariance, supersymmetry and string theory, Nuclear Phys. B 271 (1986), 93–165. (1986) MR0845945
  20. Fuks, D., Cohomology of infinite-dimensional Lie algebras, Springer, New York, 1986. (1986) Zbl0667.17005MR0874337
  21. Hochschild, G., Serre, J.P., 10.2307/1969740, Ann. of Math. 57 (2) (1953), 591–603. (1953) MR0054581DOI10.2307/1969740
  22. Kac, V.G., 10.1016/0001-8708(77)90017-2, Adv. Math. 26 (1977), 8–96. (1977) Zbl0367.17007MR0486011DOI10.1016/0001-8708(77)90017-2
  23. Koszul, J.L., 10.24033/bsmf.1410, Bull. Soc. Math. France 78 (1950), 65–127. (1950) MR0036511DOI10.24033/bsmf.1410
  24. Lebedev, A., Leites, D.A., Shereshevskii, I., Lie superalgebra structures in cohomology spaces of Lie algebras with coefficients in the adjoint representation, Amer. Math. Soc. Transl. Ser. 2 213 (2005), 157–172. (2005) MR2140720
  25. Lehrer, G.I., Zhang, R.B., 10.1007/s00220-016-2731-7, Commun. Math. Phys. 349 (2) (2017), 661–702. (2017) MR3594367DOI10.1007/s00220-016-2731-7
  26. Lehrer, G.I., Zhang, R.B., 10.1017/nmj.2019.25, Nagoya Math. J. 242 (2021), 52–76. (2021) MR4250733DOI10.1017/nmj.2019.25
  27. Leites, D.A., 10.1007/BF01018415, Theor. Math. Phys. 52 (1982), 764–766. (1982) MR0683439DOI10.1007/BF01018415
  28. Manin, Y.I., Gauge field theory and complex geometry, Springer, Berlin, 1988, Translated from the Russian by N. Koblitz and J. R. King. Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 289. (1988) MR0954833
  29. Noja, S., On the geometry of forms on supermanifolds, [arXiv:2111.12841 [math.AG]]. 
  30. Noja, S., Re, R., A note on super Koszul complex and the Berezinian, Ann. Mat. Pura Appl. (4) 201 (2022), 403–421. (2022) MR4375015
  31. Ogievetskii, O.V., Penkov, I.B., 10.1007/BF01076371, Funct. Anal. Appl. 18 (1984), 68–70. (1984) MR0739100DOI10.1007/BF01076371
  32. Penkov, I.B., 10.1007/BF02095989, Invent. Math. 71 (1983), 501–512. (1983) MR0695902DOI10.1007/BF02095989
  33. Scheunert, M., Zhang, R.B., 10.1063/1.532508, J. Math. Phys. 39 (1998), 5024–5061. (1998) MR1643330DOI10.1063/1.532508
  34. Su, Y., Zhang, R.B., Cohomology of Lie superalgebras s l m | n and o s p 2 | 2 n , Proc. London Math. Soc. 94 (2007), 91–136. (2007) MR2293466
  35. Su, Y., Zhang, R.B., 10.1016/j.jalgebra.2019.11.036, J. Algebra 549 (2020), 1–29. (2020) MR4050665DOI10.1016/j.jalgebra.2019.11.036
  36. Sullivan, D., 10.1007/BF02684341, Publications Mathématiques de l'IHÉS 47 (1977), 269–331. (1977) MR0646078DOI10.1007/BF02684341
  37. Verlinde, E.P., Verlinde, H.L., 10.1016/0370-2693(87)91148-8, Phys. Lett. B 192 (1987), 95–102. (1987) MR0895996DOI10.1016/0370-2693(87)91148-8
  38. Witten, E., 10.4310/PAMQ.2019.v15.n1.a1, Pure Appl. Math. Quart. 15 (1) (2019), 3–56. (2019) MR3946082DOI10.4310/PAMQ.2019.v15.n1.a1

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.