Unimodular rows over Laurent polynomial rings

Abdessalem Mnif; Morou Amidou

Czechoslovak Mathematical Journal (2022)

  • Volume: 72, Issue: 4, page 927-934
  • ISSN: 0011-4642

Abstract

top
We prove that for any ring 𝐑 of Krull dimension not greater than 1 and n 3 , the group E n ( 𝐑 [ X , X - 1 ] ) acts transitively on Um n ( 𝐑 [ X , X - 1 ] ) . In particular, we obtain that for any ring 𝐑 with Krull dimension not greater than 1, all finitely generated stably free modules over 𝐑 [ X , X - 1 ] are free. All the obtained results are proved constructively.

How to cite

top

Mnif, Abdessalem, and Amidou, Morou. "Unimodular rows over Laurent polynomial rings." Czechoslovak Mathematical Journal 72.4 (2022): 927-934. <http://eudml.org/doc/298940>.

@article{Mnif2022,
abstract = {We prove that for any ring $\{\bf R\}$ of Krull dimension not greater than 1 and $n\ge 3$, the group $\{\rm E\}_\{n\}(\{\bf R\}[X, X^\{-1\}])$ acts transitively on $\{\rm Um\}_\{n\}(\{\bf R\} [X, X^\{-1\}])$. In particular, we obtain that for any ring $\{\bf R\}$ with Krull dimension not greater than 1, all finitely generated stably free modules over $\{\bf R\} [X, X^\{-1\}]$ are free. All the obtained results are proved constructively.},
author = {Mnif, Abdessalem, Amidou, Morou},
journal = {Czechoslovak Mathematical Journal},
keywords = {Quillen-Suslin theorem; stably free module; Hermite ring conjecture; Laurent polynomial ring; constructive mathematics},
language = {eng},
number = {4},
pages = {927-934},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Unimodular rows over Laurent polynomial rings},
url = {http://eudml.org/doc/298940},
volume = {72},
year = {2022},
}

TY - JOUR
AU - Mnif, Abdessalem
AU - Amidou, Morou
TI - Unimodular rows over Laurent polynomial rings
JO - Czechoslovak Mathematical Journal
PY - 2022
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 72
IS - 4
SP - 927
EP - 934
AB - We prove that for any ring ${\bf R}$ of Krull dimension not greater than 1 and $n\ge 3$, the group ${\rm E}_{n}({\bf R}[X, X^{-1}])$ acts transitively on ${\rm Um}_{n}({\bf R} [X, X^{-1}])$. In particular, we obtain that for any ring ${\bf R}$ with Krull dimension not greater than 1, all finitely generated stably free modules over ${\bf R} [X, X^{-1}]$ are free. All the obtained results are proved constructively.
LA - eng
KW - Quillen-Suslin theorem; stably free module; Hermite ring conjecture; Laurent polynomial ring; constructive mathematics
UR - http://eudml.org/doc/298940
ER -

References

top
  1. Amidou, M., Yengui, M., 10.1016/j.laa.2008.05.002, Linear Algebra Appl. 429 (2008), 1687-1698. (2008) Zbl1147.13004MR2444354DOI10.1016/j.laa.2008.05.002
  2. Barhoumi, S., Yengui, I., On a localization of the Laurent polynomial ring, JP J. Algebra Number Theory Appl. 5 (2005), 591-602. (2005) Zbl1095.13006MR2189971
  3. Bass, H., Libération des modules projectifs sur certains anneaux des polynômes, Sém. Bourbaki 1973/1974, Expose 448 Lecture Notes in Mathematics 431. Springer, Berlin (1975), 228-354 French. (1975) Zbl0304.13012MR0472826
  4. Coquand, T., Lombardi, H., Quitté, C., 10.1007/s00229-004-0509-2, Manuscr. Math. 115 (2004), 513-520. (2004) Zbl1059.13006MR2103665DOI10.1007/s00229-004-0509-2
  5. Ellouz, A., Lombardi, H., Yengui, I., 10.1016/j.jalgebra.2007.12.004, J. Algebra 320 (2008), 521-533. (2008) Zbl1147.13012MR2422305DOI10.1016/j.jalgebra.2007.12.004
  6. Huckaba, J. A., Commutative Rings with Zero Divisors, Monographs and Textbooks in Pure and Applied Mathematics 117. Marcel Dekker, New York (1988). (1988) Zbl0637.13001MR0938741
  7. Kunz, E., 10.1007/978-1-4614-5987-3, Birkhäuser, Boston (1985). (1985) Zbl0563.13001MR0789602DOI10.1007/978-1-4614-5987-3
  8. Lam, T. Y., 10.1007/BFb0068340, Lecture Notes in Mathematics 635. Springer, Berlin (1978). (1978) Zbl0373.13004MR0485842DOI10.1007/BFb0068340
  9. Lam, T. Y., 10.1007/978-3-540-34575-6, Springer Monograph Mathematics. Springer, Berlin (2006). (2006) Zbl1101.13001MR2235330DOI10.1007/978-3-540-34575-6
  10. Lombardi, H., Quitté, C., 10.1007/978-94-017-9944-7, Algebra and Applications 20. Springer, Dordrecht (2015). (2015) Zbl1327.13001MR3408454DOI10.1007/978-94-017-9944-7
  11. Lombardi, H., Yengui, I., 10.1016/j.jsc.2005.01.004, J. Symb. Comput. 39 (2005), 707-717. (2005) Zbl1120.13034MR2168615DOI10.1016/j.jsc.2005.01.004
  12. Mines, R., Richman, F., Ruitenburg, W., 10.1007/978-1-4419-8640-5, Universitext. Springer, New York (1988). (1988) Zbl0725.03044MR0919949DOI10.1007/978-1-4419-8640-5
  13. Roitman, M., 10.1090/S0002-9939-1986-0845969-9, Proc. Am. Math. Soc. 97 (1986), 585-589. (1986) Zbl0595.13009MR0845969DOI10.1090/S0002-9939-1986-0845969-9
  14. Suslin, A. A., 10.1070/IM1977v011n02ABEH001709, Math. USSR, Izv. 11 (1977), 221-238. (1977) Zbl0378.13002MR0472792DOI10.1070/IM1977v011n02ABEH001709
  15. Yengui, I., 10.1016/j.tcs.2007.10.011, Theor. Comput. Sci. 392 (2008), 174-178. (2008) Zbl1141.13303MR2394992DOI10.1016/j.tcs.2007.10.011
  16. Yengui, I., 10.1016/j.jalgebra.2008.02.007, J. Algebra 320 (2008), 437-441. (2008) Zbl1151.13009MR2417998DOI10.1016/j.jalgebra.2008.02.007
  17. Yengui, I., 10.1007/978-3-319-19494-3, Lecture Notes in Mathematics 2138. Springer, Cham (2015). (2015) Zbl1360.13002MR3409062DOI10.1007/978-3-319-19494-3

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.