Unimodular rows over Laurent polynomial rings
Czechoslovak Mathematical Journal (2022)
- Volume: 72, Issue: 4, page 927-934
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topMnif, Abdessalem, and Amidou, Morou. "Unimodular rows over Laurent polynomial rings." Czechoslovak Mathematical Journal 72.4 (2022): 927-934. <http://eudml.org/doc/298940>.
@article{Mnif2022,
abstract = {We prove that for any ring $\{\bf R\}$ of Krull dimension not greater than 1 and $n\ge 3$, the group $\{\rm E\}_\{n\}(\{\bf R\}[X, X^\{-1\}])$ acts transitively on $\{\rm Um\}_\{n\}(\{\bf R\} [X, X^\{-1\}])$. In particular, we obtain that for any ring $\{\bf R\}$ with Krull dimension not greater than 1, all finitely generated stably free modules over $\{\bf R\} [X, X^\{-1\}]$ are free. All the obtained results are proved constructively.},
author = {Mnif, Abdessalem, Amidou, Morou},
journal = {Czechoslovak Mathematical Journal},
keywords = {Quillen-Suslin theorem; stably free module; Hermite ring conjecture; Laurent polynomial ring; constructive mathematics},
language = {eng},
number = {4},
pages = {927-934},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Unimodular rows over Laurent polynomial rings},
url = {http://eudml.org/doc/298940},
volume = {72},
year = {2022},
}
TY - JOUR
AU - Mnif, Abdessalem
AU - Amidou, Morou
TI - Unimodular rows over Laurent polynomial rings
JO - Czechoslovak Mathematical Journal
PY - 2022
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 72
IS - 4
SP - 927
EP - 934
AB - We prove that for any ring ${\bf R}$ of Krull dimension not greater than 1 and $n\ge 3$, the group ${\rm E}_{n}({\bf R}[X, X^{-1}])$ acts transitively on ${\rm Um}_{n}({\bf R} [X, X^{-1}])$. In particular, we obtain that for any ring ${\bf R}$ with Krull dimension not greater than 1, all finitely generated stably free modules over ${\bf R} [X, X^{-1}]$ are free. All the obtained results are proved constructively.
LA - eng
KW - Quillen-Suslin theorem; stably free module; Hermite ring conjecture; Laurent polynomial ring; constructive mathematics
UR - http://eudml.org/doc/298940
ER -
References
top- Amidou, M., Yengui, M., 10.1016/j.laa.2008.05.002, Linear Algebra Appl. 429 (2008), 1687-1698. (2008) Zbl1147.13004MR2444354DOI10.1016/j.laa.2008.05.002
- Barhoumi, S., Yengui, I., On a localization of the Laurent polynomial ring, JP J. Algebra Number Theory Appl. 5 (2005), 591-602. (2005) Zbl1095.13006MR2189971
- Bass, H., Libération des modules projectifs sur certains anneaux des polynômes, Sém. Bourbaki 1973/1974, Expose 448 Lecture Notes in Mathematics 431. Springer, Berlin (1975), 228-354 French. (1975) Zbl0304.13012MR0472826
- Coquand, T., Lombardi, H., Quitté, C., 10.1007/s00229-004-0509-2, Manuscr. Math. 115 (2004), 513-520. (2004) Zbl1059.13006MR2103665DOI10.1007/s00229-004-0509-2
- Ellouz, A., Lombardi, H., Yengui, I., 10.1016/j.jalgebra.2007.12.004, J. Algebra 320 (2008), 521-533. (2008) Zbl1147.13012MR2422305DOI10.1016/j.jalgebra.2007.12.004
- Huckaba, J. A., Commutative Rings with Zero Divisors, Monographs and Textbooks in Pure and Applied Mathematics 117. Marcel Dekker, New York (1988). (1988) Zbl0637.13001MR0938741
- Kunz, E., 10.1007/978-1-4614-5987-3, Birkhäuser, Boston (1985). (1985) Zbl0563.13001MR0789602DOI10.1007/978-1-4614-5987-3
- Lam, T. Y., 10.1007/BFb0068340, Lecture Notes in Mathematics 635. Springer, Berlin (1978). (1978) Zbl0373.13004MR0485842DOI10.1007/BFb0068340
- Lam, T. Y., 10.1007/978-3-540-34575-6, Springer Monograph Mathematics. Springer, Berlin (2006). (2006) Zbl1101.13001MR2235330DOI10.1007/978-3-540-34575-6
- Lombardi, H., Quitté, C., 10.1007/978-94-017-9944-7, Algebra and Applications 20. Springer, Dordrecht (2015). (2015) Zbl1327.13001MR3408454DOI10.1007/978-94-017-9944-7
- Lombardi, H., Yengui, I., 10.1016/j.jsc.2005.01.004, J. Symb. Comput. 39 (2005), 707-717. (2005) Zbl1120.13034MR2168615DOI10.1016/j.jsc.2005.01.004
- Mines, R., Richman, F., Ruitenburg, W., 10.1007/978-1-4419-8640-5, Universitext. Springer, New York (1988). (1988) Zbl0725.03044MR0919949DOI10.1007/978-1-4419-8640-5
- Roitman, M., 10.1090/S0002-9939-1986-0845969-9, Proc. Am. Math. Soc. 97 (1986), 585-589. (1986) Zbl0595.13009MR0845969DOI10.1090/S0002-9939-1986-0845969-9
- Suslin, A. A., 10.1070/IM1977v011n02ABEH001709, Math. USSR, Izv. 11 (1977), 221-238. (1977) Zbl0378.13002MR0472792DOI10.1070/IM1977v011n02ABEH001709
- Yengui, I., 10.1016/j.tcs.2007.10.011, Theor. Comput. Sci. 392 (2008), 174-178. (2008) Zbl1141.13303MR2394992DOI10.1016/j.tcs.2007.10.011
- Yengui, I., 10.1016/j.jalgebra.2008.02.007, J. Algebra 320 (2008), 437-441. (2008) Zbl1151.13009MR2417998DOI10.1016/j.jalgebra.2008.02.007
- Yengui, I., 10.1007/978-3-319-19494-3, Lecture Notes in Mathematics 2138. Springer, Cham (2015). (2015) Zbl1360.13002MR3409062DOI10.1007/978-3-319-19494-3
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.