Nonlocal semilinear second-order differential inclusions in abstract spaces without compactness
Martina Pavlačková; Valentina Taddei
Archivum Mathematicum (2023)
- Volume: 059, Issue: 1, page 99-107
- ISSN: 0044-8753
Access Full Article
topAbstract
topHow to cite
topPavlačková, Martina, and Taddei, Valentina. "Nonlocal semilinear second-order differential inclusions in abstract spaces without compactness." Archivum Mathematicum 059.1 (2023): 99-107. <http://eudml.org/doc/298975>.
@article{Pavlačková2023,
abstract = {We study the existence of a mild solution to the nonlocal initial value problem for semilinear second-order differential inclusions in abstract spaces. The result is obtained by combining the Kakutani fixed point theorem with the approximation solvability method and the weak topology. This combination enables getting the result without any requirements for compactness of the right-hand side or of the cosine family generated by the linear operator.},
author = {Pavlačková, Martina, Taddei, Valentina},
journal = {Archivum Mathematicum},
keywords = {second-order differential inclusion; nonlocal conditions; Banach spaces; cosine family; approximation solvability method; mild solution},
language = {eng},
number = {1},
pages = {99-107},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {Nonlocal semilinear second-order differential inclusions in abstract spaces without compactness},
url = {http://eudml.org/doc/298975},
volume = {059},
year = {2023},
}
TY - JOUR
AU - Pavlačková, Martina
AU - Taddei, Valentina
TI - Nonlocal semilinear second-order differential inclusions in abstract spaces without compactness
JO - Archivum Mathematicum
PY - 2023
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 059
IS - 1
SP - 99
EP - 107
AB - We study the existence of a mild solution to the nonlocal initial value problem for semilinear second-order differential inclusions in abstract spaces. The result is obtained by combining the Kakutani fixed point theorem with the approximation solvability method and the weak topology. This combination enables getting the result without any requirements for compactness of the right-hand side or of the cosine family generated by the linear operator.
LA - eng
KW - second-order differential inclusion; nonlocal conditions; Banach spaces; cosine family; approximation solvability method; mild solution
UR - http://eudml.org/doc/298975
ER -
References
top- Andres, J., Malaguti, L., Pavlačková, M., On second-order boundary value problems in Banach spaces: a bound sets approach, Topol. Methods Nonlinear Anal. 37 (2) (2011), 303–341. (2011) MR2849825
- Andres, J., Malaguti, L., Pavlačková, M., A Scorza-Dragoni approach to second-order boundary value problems in abstract spaces, Appl. Math. Inf. Sci. 6 (2) (2012), 29–44. (2012) MR2914078
- Balachandran, K., Park, J.Y., Existence of solutions of second order nonlinear differential equations with nonlocal conditions in Banach spaces, Indian J. Pure Appl. Math. 32 (12) (2001), 1883–1891. (2001) MR1879632
- Benchohra, M., Nieto, J.J., Rezoug, N., 10.1515/dema-2017-0029, Demonstr. Math. 50 (2017), 309–319. (2017) MR3742568DOI10.1515/dema-2017-0029
- Benchohra, M., Rezoug, N., Samet, B., Zhou, Y., 10.3390/math7121134, Mathematics 7 (12) (2019), 20 pp., art. no. 1134. (2019) DOI10.3390/math7121134
- Benedetti, I., Loi, N.V., Malaguti, L., Obukhovskii, V., An approximation solvability method for nonlocal differential problems in Hilbert spaces, Commun. Contemp. Math. 19 (2) (2017), 34 pp. (2017) MR3611657
- Benedetti, I., Loi, N.V., Malaguti, L., Taddei, V., 10.1016/j.jde.2016.10.019, J. Differential Equations 262 (2007), 1499–1523. (2007) MR3582201DOI10.1016/j.jde.2016.10.019
- Benedetti, I., Loi, N.V., Taddei, V., 10.3934/dcds.2017128, Discrete Contin. Dyn. Syst. Ser. A 37 (6) (2017), 2977–2998. (2017) MR3622071DOI10.3934/dcds.2017128
- Benedetti, I., Malaguti, L., Taddei, V., Nonlocal semilinear evolution equations without strong compactness: theory and applications, Rend. Istit. Mat. Univ. Trieste 44 (2012), 371–388. (2012) MR3047115
- Bochner, S., Taylor, A.E., 10.2307/1968472, Ann. Math. 39 (1938), 913–944. (1938) DOI10.2307/1968472
- Byszewski, L., Lakshmikantham, V., 10.1080/00036819008839989, Appl. Anal. 40 (1) (1991), 11–19. (1991) DOI10.1080/00036819008839989
- Cardinali, T., Gentili, S., 10.24193/subbmath.2017.0008, Stud. Univ. Babeş-Bolyai Math. 62 (1) (2017), 101–117. (2017) MR3627069DOI10.24193/subbmath.2017.0008
- Cernea, A., A note on the solutions of a second-order evolution in non separable Banach spaces, Comment. Math. Univ. Carolin. 58 (3) (2017), 307–314. (2017) MR3708775
- Henríquez, H.R., Poblete, V., Pozo, J., 10.1016/j.jmaa.2013.10.086, J. Math. Anal. Appl. 412 (2014), 1064–1083. (2014) MR3147269DOI10.1016/j.jmaa.2013.10.086
- Hernández, E.M., Henríquez, H.R., 10.4064/ap83-2-6, Ann. Polon. Math. 83 (2) (2004), 149–170. (2004) MR2111405DOI10.4064/ap83-2-6
- Hernández, E.M., Henríquez, H.R., 10.1619/fesi.52.113, Funkcial. Ekvac. 52 (1) (2009), 113–137. (2009) MR2538282DOI10.1619/fesi.52.113
- Kakutani, S.A., 10.1215/S0012-7094-41-00838-4, Duke Math. J. 8 (1941), 451–459. (1941) DOI10.1215/S0012-7094-41-00838-4
- Kamenskii, M., Obukhovskii, V., Zecca, P., Condensing multivalued maps and semilinear differential inclusions in Banach spaces, W. de Gruyter, Berlin, 2001. (2001) MR1831201
- Malaguti, L., Perrotta, S., Taddei, V., 10.3934/eect.2021053, Evol. Equ. Control Theory 11 (5) (2022), 1533–1564. (2022) MR4475865DOI10.3934/eect.2021053
- Pavlačková, M., Taddei, V., 10.3390/math10040672, Mathematics 10 (672) (2022). (2022) DOI10.3390/math10040672
- Tidke, H.L., Dhakne, M.B., 10.1007/s12591-009-0024-8, Differ. Equ. Dyn. Syst. 17 (4) (2009), 331–342. (2009) MR2610901DOI10.1007/s12591-009-0024-8
- Travis, C.C., Webb, G.F., 10.1007/BF01902205, Acta Math. Acad. Sci. Hungar. 32 (1–2) (1978), 75–96. (1978) DOI10.1007/BF01902205
- Wu, J., Theory and application of partial functional differential equations, Springer-Verlag, New York, 1996. (1996)
- Xiao, J.-Z., Zhu, X.-H., Cheng, R., 10.1016/j.camwa.2012.02.015, Comput. Math. Appl. 64 (2) (2012), 147–160. (2012) MR2928211DOI10.1016/j.camwa.2012.02.015
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.