Unique solvability of fractional functional differential equation on the basis of Vallée-Poussin theorem
Satyam Narayan Srivastava; Alexander Domoshnitsky; Seshadev Padhi; Vladimir Raichik
Archivum Mathematicum (2023)
- Volume: 059, Issue: 1, page 117-123
- ISSN: 0044-8753
Access Full Article
topAbstract
topHow to cite
topSrivastava, Satyam Narayan, et al. "Unique solvability of fractional functional differential equation on the basis of Vallée-Poussin theorem." Archivum Mathematicum 059.1 (2023): 117-123. <http://eudml.org/doc/298981>.
@article{Srivastava2023,
abstract = {We propose explicit tests of unique solvability of two-point and focal boundary value problems for fractional functional differential equations with Riemann-Liouville derivative.},
author = {Srivastava, Satyam Narayan, Domoshnitsky, Alexander, Padhi, Seshadev, Raichik, Vladimir},
journal = {Archivum Mathematicum},
keywords = {Riemann-Liouville derivative; unique solvability; differential inequality},
language = {eng},
number = {1},
pages = {117-123},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {Unique solvability of fractional functional differential equation on the basis of Vallée-Poussin theorem},
url = {http://eudml.org/doc/298981},
volume = {059},
year = {2023},
}
TY - JOUR
AU - Srivastava, Satyam Narayan
AU - Domoshnitsky, Alexander
AU - Padhi, Seshadev
AU - Raichik, Vladimir
TI - Unique solvability of fractional functional differential equation on the basis of Vallée-Poussin theorem
JO - Archivum Mathematicum
PY - 2023
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 059
IS - 1
SP - 117
EP - 123
AB - We propose explicit tests of unique solvability of two-point and focal boundary value problems for fractional functional differential equations with Riemann-Liouville derivative.
LA - eng
KW - Riemann-Liouville derivative; unique solvability; differential inequality
UR - http://eudml.org/doc/298981
ER -
References
top- Agarwal, R.P., Bohner, M., Özbekler, A., Lyapunov Inequalities and Applications, Springer, Berlin, 2021. (2021) MR4260282
- Azbelev, N.V., Maksimov, V.P., Rakhmatullina, L.F., Introduction to the Theory of Functional Differential Equations, Hindawi Publishing, 2007. (2007) MR2319815
- Benmezai, A., Saadi, A., Existence of positive solutions for a nonlinear fractional differential equations with integral boundary conditions, J. Fract. Calc. Appl. 7 (2) (2016), 145–152. (2016) MR3481772
- Domoshnitsky, A., Padhi, S., Srivastava, S.N., 10.1007/s13540-022-00061-z, Fract. Calc. Appl. Anal. 25 (2022), 1630–1650, https://doi.org/10.1007/s13540-022-00061-z. (2022) MR4468528DOI10.1007/s13540-022-00061-z
- Ferreira, R., 10.2478/s13540-013-0060-5, Fract. Calc. Appl. Anal. 16 (4) (2013), 978–984, https://doi.org/10.2478/s13540-013-0060-5. (2013) MR3124347DOI10.2478/s13540-013-0060-5
- Ferreira, R.A., Existence and uniqueness of solutions for two-point fractional boundary value problems, Electron. J. Differential Equations 202 (5) (2016). (2016) MR3547391
- Henderson, J., Luca, R., Boundary Value Problems for Systems of Differential, Difference and Fractional Equations: Positive Solutions, Academic Press, 2015. (2015) MR3430818
- Henderson, J., Luca, R., Nonexistence of positive solutions for a system of coupled fractional boundary value problems, Bound. Value Probl. 2015 (1) (2015), 1–12. (2015) MR3382857
- Henderson, J., Luca, R., Positive solutions for a system of semipositone coupled fractional boundary value problems, Bound. Value Probl. 2016 (1) (2016), 1–23. (2016) MR3471318
- Jankowski, T., 10.1016/j.amc.2014.04.080, Appl. Math. Comput. 241 (2014), 200–213. (2014) MR3223422DOI10.1016/j.amc.2014.04.080
- Kilbas, A.A., Srivastava, H.M., Trujillo, J.J., Theory and Applications of Fractional Differential Equations, Elsevier, 2006. (2006) Zbl1092.45003MR2218073
- Krasnosel’skii, M.A., Vainikko, G.M., Zabreyko, R.P., Ruticki, Y.B., Stet’senko, V.V., Approximate Solution of Operator Equations, Springer Science & Business Media, 2012. (2012)
- Padhi, S., Graef, J.R., Pati, S., 10.1515/fca-2018-0038, Fract. Calc. Appl. Anal. 21 (3) (2018), 716–745, https://doi.org/10.1515/fca-2018-0038. (2018) MR3827151DOI10.1515/fca-2018-0038
- Podlubny, I., Fractional Differential Equations, Academic Press, San Diego, 1999. (1999) Zbl0924.34008
- Qiao, Y., Zhou, Z., Existence of positive solutions of singular fractional differential equations with infinite-point boundary conditions, Adv. Difference Equations 2017 (1) (2017), 1–9. (2017) MR3594502
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.