Large time behavior in a quasilinear parabolic-parabolic-elliptic attraction-repulsion chemotaxis system

Yutaro Chiyo

Archivum Mathematicum (2023)

  • Issue: 2, page 163-171
  • ISSN: 0044-8753

Abstract

top
This paper deals with a quasilinear parabolic-parabolic-elliptic attraction-repulsion chemotaxis system. Boundedness, stabilization and blow-up in this system of the fully parabolic and parabolic-elliptic-elliptic versions have already been proved. The purpose of this paper is to derive boundedness and stabilization in the parabolic-parabolic-elliptic version.

How to cite

top

Chiyo, Yutaro. "Large time behavior in a quasilinear parabolic-parabolic-elliptic attraction-repulsion chemotaxis system." Archivum Mathematicum (2023): 163-171. <http://eudml.org/doc/298982>.

@article{Chiyo2023,
abstract = {This paper deals with a quasilinear parabolic-parabolic-elliptic attraction-repulsion chemotaxis system. Boundedness, stabilization and blow-up in this system of the fully parabolic and parabolic-elliptic-elliptic versions have already been proved. The purpose of this paper is to derive boundedness and stabilization in the parabolic-parabolic-elliptic version.},
author = {Chiyo, Yutaro},
journal = {Archivum Mathematicum},
keywords = {chemotaxis; quasilinear; attraction-repulsion; stabilization},
language = {eng},
number = {2},
pages = {163-171},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {Large time behavior in a quasilinear parabolic-parabolic-elliptic attraction-repulsion chemotaxis system},
url = {http://eudml.org/doc/298982},
year = {2023},
}

TY - JOUR
AU - Chiyo, Yutaro
TI - Large time behavior in a quasilinear parabolic-parabolic-elliptic attraction-repulsion chemotaxis system
JO - Archivum Mathematicum
PY - 2023
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
IS - 2
SP - 163
EP - 171
AB - This paper deals with a quasilinear parabolic-parabolic-elliptic attraction-repulsion chemotaxis system. Boundedness, stabilization and blow-up in this system of the fully parabolic and parabolic-elliptic-elliptic versions have already been proved. The purpose of this paper is to derive boundedness and stabilization in the parabolic-parabolic-elliptic version.
LA - eng
KW - chemotaxis; quasilinear; attraction-repulsion; stabilization
UR - http://eudml.org/doc/298982
ER -

References

top
  1. Chiyo, Y., Stabilization for small mass in a quasilinear parabolic-elliptic-elliptic attraction-repulsion chemotaxis system with density-dependent sensitivity: repulsion-dominant case, Adv. Math. Sci. Appl. 31 (2) (2022), 327–341. (2022) MR4521442
  2. Chiyo, Y., Marras, M., Tanaka, Y., Yokota, T., Blow-up phenomena in a parabolic-elliptic-elliptic attraction-repulsion chemotaxis system with superlinear logistic degradation, Nonlinear Anal. 212 (2021), 14 pp., Paper No. 112550. (2021) MR4299101
  3. Chiyo, Y., Yokota, T., Stabilization for small mass in a quasilinear parabolic-elliptic-elliptic attraction-repulsion chemotaxis system with density-dependent sensitivity: balanced case, Matematiche (Catania), to appear. 
  4. Chiyo, Y., Yokota, T., 10.1007/s00033-022-01695-y, Z. Angew. Math. Phys. 73 (2) (2022), 27 pp., Paper No. 61. (2022) MR4386024DOI10.1007/s00033-022-01695-y
  5. Fujie, K., Suzuki, T., Global existence and boundedness in a fully parabolic 2D attraction-repulsion system: chemotaxis-dominant case, Adv. Math. Sci. Appl. 28 (2019), 1–9. (2019) MR4416882
  6. Ishida, S., Yokota, T., Boundedness in a quasilinear fully parabolic Keller-Segel system via maximal Sobolev regularity, Discrete Contin. Dyn. Syst. Ser. S 13 (2020), 2112–232. (2020) MR4043690
  7. Ladyženskaja, O.A., Solonnikov, V.A., Ural’ceva, N.N., Linear and Quasilinear Equations of Parabolic Type, AMS, Providence, 1968. (1968) 
  8. Lankeit, J., Infinite time blow-up of many solutions to a general quasilinear parabolic-elliptic Keller-Segel system, Discrete Contin. Dyn. Syst. Ser. S 13 (2) (2020), 233–255. (2020) MR4043691
  9. Lankeit, J., 10.1016/j.jmaa.2021.125409, J. Math. Anal. Appl. 504 (2) (2021), 16 pp., Paper No. 125409. (2021) MR4270582DOI10.1016/j.jmaa.2021.125409
  10. Li, Y., Lin, K., Mu, C., Asymptotic behavior for small mass in an attraction-repulsion chemotaxis system, Electron. J. Differential Equations 2015 (146) (2015), 13 pp. (2015) MR3358518
  11. Lin, K., Mu, C., Wang, L., 10.1016/j.jmaa.2014.12.052, J. Math. Anal. Appl. 426 (1) (2015), 105–124. (2015) MR3306365DOI10.1016/j.jmaa.2014.12.052
  12. Luca, M., Chavez-Ross, A., Edelstein-Keshet, L., Mogliner, A., 10.1016/S0092-8240(03)00030-2, Bull. Math. Biol. 65 (2003), 673–730. (2003) DOI10.1016/S0092-8240(03)00030-2
  13. Tao, Y., Wang, Z.-A., 10.1142/S0218202512500443, Math. Models Methods Appl. Sci. 23 (2013), 1–36. (2013) MR2997466DOI10.1142/S0218202512500443
  14. Tao, Y., Winkler, M., 10.1016/j.jde.2011.08.019, J. Differential Equations 252 (1) (2012), 692–715. (2012) MR2852223DOI10.1016/j.jde.2011.08.019
  15. Winkler, M., 10.1016/j.jde.2018.12.019, J. Differential Equations 266 (12) (2019), 8034–8066. (2019) MR3944248DOI10.1016/j.jde.2018.12.019

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.