Large time behavior in a quasilinear parabolic-parabolic-elliptic attraction-repulsion chemotaxis system
Archivum Mathematicum (2023)
- Issue: 2, page 163-171
- ISSN: 0044-8753
Access Full Article
topAbstract
topHow to cite
topChiyo, Yutaro. "Large time behavior in a quasilinear parabolic-parabolic-elliptic attraction-repulsion chemotaxis system." Archivum Mathematicum (2023): 163-171. <http://eudml.org/doc/298982>.
@article{Chiyo2023,
abstract = {This paper deals with a quasilinear parabolic-parabolic-elliptic attraction-repulsion chemotaxis system. Boundedness, stabilization and blow-up in this system of the fully parabolic and parabolic-elliptic-elliptic versions have already been proved. The purpose of this paper is to derive boundedness and stabilization in the parabolic-parabolic-elliptic version.},
author = {Chiyo, Yutaro},
journal = {Archivum Mathematicum},
keywords = {chemotaxis; quasilinear; attraction-repulsion; stabilization},
language = {eng},
number = {2},
pages = {163-171},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {Large time behavior in a quasilinear parabolic-parabolic-elliptic attraction-repulsion chemotaxis system},
url = {http://eudml.org/doc/298982},
year = {2023},
}
TY - JOUR
AU - Chiyo, Yutaro
TI - Large time behavior in a quasilinear parabolic-parabolic-elliptic attraction-repulsion chemotaxis system
JO - Archivum Mathematicum
PY - 2023
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
IS - 2
SP - 163
EP - 171
AB - This paper deals with a quasilinear parabolic-parabolic-elliptic attraction-repulsion chemotaxis system. Boundedness, stabilization and blow-up in this system of the fully parabolic and parabolic-elliptic-elliptic versions have already been proved. The purpose of this paper is to derive boundedness and stabilization in the parabolic-parabolic-elliptic version.
LA - eng
KW - chemotaxis; quasilinear; attraction-repulsion; stabilization
UR - http://eudml.org/doc/298982
ER -
References
top- Chiyo, Y., Stabilization for small mass in a quasilinear parabolic-elliptic-elliptic attraction-repulsion chemotaxis system with density-dependent sensitivity: repulsion-dominant case, Adv. Math. Sci. Appl. 31 (2) (2022), 327–341. (2022) MR4521442
- Chiyo, Y., Marras, M., Tanaka, Y., Yokota, T., Blow-up phenomena in a parabolic-elliptic-elliptic attraction-repulsion chemotaxis system with superlinear logistic degradation, Nonlinear Anal. 212 (2021), 14 pp., Paper No. 112550. (2021) MR4299101
- Chiyo, Y., Yokota, T., Stabilization for small mass in a quasilinear parabolic-elliptic-elliptic attraction-repulsion chemotaxis system with density-dependent sensitivity: balanced case, Matematiche (Catania), to appear.
- Chiyo, Y., Yokota, T., 10.1007/s00033-022-01695-y, Z. Angew. Math. Phys. 73 (2) (2022), 27 pp., Paper No. 61. (2022) MR4386024DOI10.1007/s00033-022-01695-y
- Fujie, K., Suzuki, T., Global existence and boundedness in a fully parabolic 2D attraction-repulsion system: chemotaxis-dominant case, Adv. Math. Sci. Appl. 28 (2019), 1–9. (2019) MR4416882
- Ishida, S., Yokota, T., Boundedness in a quasilinear fully parabolic Keller-Segel system via maximal Sobolev regularity, Discrete Contin. Dyn. Syst. Ser. S 13 (2020), 2112–232. (2020) MR4043690
- Ladyženskaja, O.A., Solonnikov, V.A., Ural’ceva, N.N., Linear and Quasilinear Equations of Parabolic Type, AMS, Providence, 1968. (1968)
- Lankeit, J., Infinite time blow-up of many solutions to a general quasilinear parabolic-elliptic Keller-Segel system, Discrete Contin. Dyn. Syst. Ser. S 13 (2) (2020), 233–255. (2020) MR4043691
- Lankeit, J., 10.1016/j.jmaa.2021.125409, J. Math. Anal. Appl. 504 (2) (2021), 16 pp., Paper No. 125409. (2021) MR4270582DOI10.1016/j.jmaa.2021.125409
- Li, Y., Lin, K., Mu, C., Asymptotic behavior for small mass in an attraction-repulsion chemotaxis system, Electron. J. Differential Equations 2015 (146) (2015), 13 pp. (2015) MR3358518
- Lin, K., Mu, C., Wang, L., 10.1016/j.jmaa.2014.12.052, J. Math. Anal. Appl. 426 (1) (2015), 105–124. (2015) MR3306365DOI10.1016/j.jmaa.2014.12.052
- Luca, M., Chavez-Ross, A., Edelstein-Keshet, L., Mogliner, A., 10.1016/S0092-8240(03)00030-2, Bull. Math. Biol. 65 (2003), 673–730. (2003) DOI10.1016/S0092-8240(03)00030-2
- Tao, Y., Wang, Z.-A., 10.1142/S0218202512500443, Math. Models Methods Appl. Sci. 23 (2013), 1–36. (2013) MR2997466DOI10.1142/S0218202512500443
- Tao, Y., Winkler, M., 10.1016/j.jde.2011.08.019, J. Differential Equations 252 (1) (2012), 692–715. (2012) MR2852223DOI10.1016/j.jde.2011.08.019
- Winkler, M., 10.1016/j.jde.2018.12.019, J. Differential Equations 266 (12) (2019), 8034–8066. (2019) MR3944248DOI10.1016/j.jde.2018.12.019
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.