Stabilization in degenerate parabolic equations in divergence form and application to chemotaxis systems
Archivum Mathematicum (2023)
- Volume: 059, Issue: 2, page 181-189
- ISSN: 0044-8753
Access Full Article
topAbstract
topHow to cite
topIshida, Sachiko, and Yokota, Tomomi. "Stabilization in degenerate parabolic equations in divergence form and application to chemotaxis systems." Archivum Mathematicum 059.2 (2023): 181-189. <http://eudml.org/doc/298992>.
@article{Ishida2023,
abstract = {This paper presents a stabilization result for weak solutions of degenerate parabolic equations in divergence form. More precisely, the result asserts that the global-in-time weak solution converges to the average of the initial data in some topology as time goes to infinity. It is also shown that the result can be applied to a degenerate parabolic-elliptic Keller-Segel system.},
author = {Ishida, Sachiko, Yokota, Tomomi},
journal = {Archivum Mathematicum},
keywords = {stabilization; degenerate diffusion; Keller-Segel systems},
language = {eng},
number = {2},
pages = {181-189},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {Stabilization in degenerate parabolic equations in divergence form and application to chemotaxis systems},
url = {http://eudml.org/doc/298992},
volume = {059},
year = {2023},
}
TY - JOUR
AU - Ishida, Sachiko
AU - Yokota, Tomomi
TI - Stabilization in degenerate parabolic equations in divergence form and application to chemotaxis systems
JO - Archivum Mathematicum
PY - 2023
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 059
IS - 2
SP - 181
EP - 189
AB - This paper presents a stabilization result for weak solutions of degenerate parabolic equations in divergence form. More precisely, the result asserts that the global-in-time weak solution converges to the average of the initial data in some topology as time goes to infinity. It is also shown that the result can be applied to a degenerate parabolic-elliptic Keller-Segel system.
LA - eng
KW - stabilization; degenerate diffusion; Keller-Segel systems
UR - http://eudml.org/doc/298992
ER -
References
top- Cao, X., 10.3934/dcds.2015.35.1891, Discrete Contin. Dyn. Syst. 35 (2015), 1891–1904. (2015) MR3294230DOI10.3934/dcds.2015.35.1891
- Cieślak, T., Stinner, C., 10.1007/s10440-013-9832-5, Acta Appl. Math. 129 (2014), 135–146. (2014) Zbl1295.35123MR3152080DOI10.1007/s10440-013-9832-5
- Cieślaka, T., Winkler, M., Stabilization in a higher-dimensional quasilinear Keller-Segel system with exponentially decaying diffusivity and subcritical sensitivity, Nonlinear Anal. 159 (2017), 129–144. (2017) MR3659827
- Hashira, T., Ishida, S., Yokota, T., 10.1016/j.jde.2018.01.038, J. Differential Equations 264 (2018), 6459–6485. (2018) MR3770055DOI10.1016/j.jde.2018.01.038
- Ishida, S., Seki, K., Yokota, T., 10.1016/j.jde.2014.01.028, J. Differential Equations 256 (2014), 2993–3010. (2014) MR3199754DOI10.1016/j.jde.2014.01.028
- Ishida, S., Yokota, T., Boundedness in a quasilinear fully parabolic Keller-Segel system via maximal Sobolev regularity, Discrete Contin. Dyn. Syst. Ser. S 13 (2020), 212–232. (2020) MR4043690
- Ishida, S., Yokota, T., 10.1007/s00526-022-02203-w, Calc. Var. Partial Differential Equations 61 (2022), Paper No. 105. (2022) MR4404850DOI10.1007/s00526-022-02203-w
- Jiang, J., 10.1007/s00033-018-1025-7, Z. Angew. Math. Phys. 69 (2018), Paper No. 130. (2018) MR3856789DOI10.1007/s00033-018-1025-7
- Langlais, M., Phillips, D., 10.1016/0362-546X(85)90057-4, Nonlinear Anal. 9 (1985), 321–333. (1985) DOI10.1016/0362-546X(85)90057-4
- Lankeit, J., Infinite time blow-up of many solutions to a general quasilinear parabolic-elliptic Keller-Segel system, Discrete Contin. Dyn. Syst. Ser. S 13 (2020), 233–255. (2020) MR4043691
- Laurençot, P., Mizoguchi, N., 10.1016/j.anihpc.2015.11.002, Ann. Inst. H. Poincaré Anal. Non Linéaire 34 (2017), 197–220. (2017) MR3592684DOI10.1016/j.anihpc.2015.11.002
- Senba, T., Suzuki, T., 10.1155/AAA/2006/23061, Abstr. Appl. Anal. 2006 (2006), 1–21. (2006) MR2211660DOI10.1155/AAA/2006/23061
- Sugiyama, Y., Kunii, H., 10.1016/j.jde.2006.03.003, J. Differential Equations 227 (2006), 333–364. (2006) MR2235324DOI10.1016/j.jde.2006.03.003
- Tao, Y., Winkler, M., 10.1016/j.jde.2011.08.019, J. Differential Equations 252 (2012), 692–715. (2012) MR2852223DOI10.1016/j.jde.2011.08.019
- Winkler, M., 10.1016/j.jde.2010.02.008, J. Differential Equations 248 (2010), 2889–2905. (2010) Zbl1190.92004MR2644137DOI10.1016/j.jde.2010.02.008
- Winkler, M., 10.1016/j.matpur.2013.01.020, J. Math. Pures Appl. 100 (2013), 748–767. (2013) Zbl1326.35053MR3115832DOI10.1016/j.matpur.2013.01.020
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.