Stabilization in degenerate parabolic equations in divergence form and application to chemotaxis systems

Sachiko Ishida; Tomomi Yokota

Archivum Mathematicum (2023)

  • Volume: 059, Issue: 2, page 181-189
  • ISSN: 0044-8753

Abstract

top
This paper presents a stabilization result for weak solutions of degenerate parabolic equations in divergence form. More precisely, the result asserts that the global-in-time weak solution converges to the average of the initial data in some topology as time goes to infinity. It is also shown that the result can be applied to a degenerate parabolic-elliptic Keller-Segel system.

How to cite

top

Ishida, Sachiko, and Yokota, Tomomi. "Stabilization in degenerate parabolic equations in divergence form and application to chemotaxis systems." Archivum Mathematicum 059.2 (2023): 181-189. <http://eudml.org/doc/298992>.

@article{Ishida2023,
abstract = {This paper presents a stabilization result for weak solutions of degenerate parabolic equations in divergence form. More precisely, the result asserts that the global-in-time weak solution converges to the average of the initial data in some topology as time goes to infinity. It is also shown that the result can be applied to a degenerate parabolic-elliptic Keller-Segel system.},
author = {Ishida, Sachiko, Yokota, Tomomi},
journal = {Archivum Mathematicum},
keywords = {stabilization; degenerate diffusion; Keller-Segel systems},
language = {eng},
number = {2},
pages = {181-189},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {Stabilization in degenerate parabolic equations in divergence form and application to chemotaxis systems},
url = {http://eudml.org/doc/298992},
volume = {059},
year = {2023},
}

TY - JOUR
AU - Ishida, Sachiko
AU - Yokota, Tomomi
TI - Stabilization in degenerate parabolic equations in divergence form and application to chemotaxis systems
JO - Archivum Mathematicum
PY - 2023
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 059
IS - 2
SP - 181
EP - 189
AB - This paper presents a stabilization result for weak solutions of degenerate parabolic equations in divergence form. More precisely, the result asserts that the global-in-time weak solution converges to the average of the initial data in some topology as time goes to infinity. It is also shown that the result can be applied to a degenerate parabolic-elliptic Keller-Segel system.
LA - eng
KW - stabilization; degenerate diffusion; Keller-Segel systems
UR - http://eudml.org/doc/298992
ER -

References

top
  1. Cao, X., 10.3934/dcds.2015.35.1891, Discrete Contin. Dyn. Syst. 35 (2015), 1891–1904. (2015) MR3294230DOI10.3934/dcds.2015.35.1891
  2. Cieślak, T., Stinner, C., 10.1007/s10440-013-9832-5, Acta Appl. Math. 129 (2014), 135–146. (2014) Zbl1295.35123MR3152080DOI10.1007/s10440-013-9832-5
  3. Cieślaka, T., Winkler, M., Stabilization in a higher-dimensional quasilinear Keller-Segel system with exponentially decaying diffusivity and subcritical sensitivity, Nonlinear Anal. 159 (2017), 129–144. (2017) MR3659827
  4. Hashira, T., Ishida, S., Yokota, T., 10.1016/j.jde.2018.01.038, J. Differential Equations 264 (2018), 6459–6485. (2018) MR3770055DOI10.1016/j.jde.2018.01.038
  5. Ishida, S., Seki, K., Yokota, T., 10.1016/j.jde.2014.01.028, J. Differential Equations 256 (2014), 2993–3010. (2014) MR3199754DOI10.1016/j.jde.2014.01.028
  6. Ishida, S., Yokota, T., Boundedness in a quasilinear fully parabolic Keller-Segel system via maximal Sobolev regularity, Discrete Contin. Dyn. Syst. Ser. S 13 (2020), 212–232. (2020) MR4043690
  7. Ishida, S., Yokota, T., 10.1007/s00526-022-02203-w, Calc. Var. Partial Differential Equations 61 (2022), Paper No. 105. (2022) MR4404850DOI10.1007/s00526-022-02203-w
  8. Jiang, J., 10.1007/s00033-018-1025-7, Z. Angew. Math. Phys. 69 (2018), Paper No. 130. (2018) MR3856789DOI10.1007/s00033-018-1025-7
  9. Langlais, M., Phillips, D., 10.1016/0362-546X(85)90057-4, Nonlinear Anal. 9 (1985), 321–333. (1985) DOI10.1016/0362-546X(85)90057-4
  10. Lankeit, J., Infinite time blow-up of many solutions to a general quasilinear parabolic-elliptic Keller-Segel system, Discrete Contin. Dyn. Syst. Ser. S 13 (2020), 233–255. (2020) MR4043691
  11. Laurençot, P., Mizoguchi, N., 10.1016/j.anihpc.2015.11.002, Ann. Inst. H. Poincaré Anal. Non Linéaire 34 (2017), 197–220. (2017) MR3592684DOI10.1016/j.anihpc.2015.11.002
  12. Senba, T., Suzuki, T., 10.1155/AAA/2006/23061, Abstr. Appl. Anal. 2006 (2006), 1–21. (2006) MR2211660DOI10.1155/AAA/2006/23061
  13. Sugiyama, Y., Kunii, H., 10.1016/j.jde.2006.03.003, J. Differential Equations 227 (2006), 333–364. (2006) MR2235324DOI10.1016/j.jde.2006.03.003
  14. Tao, Y., Winkler, M., 10.1016/j.jde.2011.08.019, J. Differential Equations 252 (2012), 692–715. (2012) MR2852223DOI10.1016/j.jde.2011.08.019
  15. Winkler, M., 10.1016/j.jde.2010.02.008, J. Differential Equations 248 (2010), 2889–2905. (2010) Zbl1190.92004MR2644137DOI10.1016/j.jde.2010.02.008
  16. Winkler, M., 10.1016/j.matpur.2013.01.020, J. Math. Pures Appl. 100 (2013), 748–767. (2013) Zbl1326.35053MR3115832DOI10.1016/j.matpur.2013.01.020

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.