Some isomorphic properties in projective tensor products

Ioana Ghenciu

Commentationes Mathematicae Universitatis Carolinae (2022)

  • Volume: 62 63, Issue: 4, page 473-485
  • ISSN: 0010-2628

Abstract

top
We give sufficient conditions implying that the projective tensor product of two Banach spaces X and Y has the p -sequentially Right and the p - L -limited properties, 1 p < .

How to cite

top

Ghenciu, Ioana. "Some isomorphic properties in projective tensor products." Commentationes Mathematicae Universitatis Carolinae 62 63.4 (2022): 473-485. <http://eudml.org/doc/299030>.

@article{Ghenciu2022,
abstract = {We give sufficient conditions implying that the projective tensor product of two Banach spaces $X$ and $Y$ has the $p$-sequentially Right and the $p$-$L$-limited properties, $1\le p<\infty $.},
author = {Ghenciu, Ioana},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {$L$-limited property; $p$-(SR) property; $p$-$L$-limited property; sequentially Right property},
language = {eng},
number = {4},
pages = {473-485},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Some isomorphic properties in projective tensor products},
url = {http://eudml.org/doc/299030},
volume = {62 63},
year = {2022},
}

TY - JOUR
AU - Ghenciu, Ioana
TI - Some isomorphic properties in projective tensor products
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2022
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 62 63
IS - 4
SP - 473
EP - 485
AB - We give sufficient conditions implying that the projective tensor product of two Banach spaces $X$ and $Y$ has the $p$-sequentially Right and the $p$-$L$-limited properties, $1\le p<\infty $.
LA - eng
KW - $L$-limited property; $p$-(SR) property; $p$-$L$-limited property; sequentially Right property
UR - http://eudml.org/doc/299030
ER -

References

top
  1. Alikhani M., 10.2298/FIL1914461A, Filomat 33 (2019), no. 14, 4461–4474. MR4049162DOI10.2298/FIL1914461A
  2. Andrews K. T., 10.1007/BF01406706, Math. Ann. 241 (1979), no. 1, 35–41. MR0531148DOI10.1007/BF01406706
  3. Bessaga C., Pełczyński A., 10.4064/sm-17-2-151-164, Studia Math. 17 (1958), 151–164. MR0115069DOI10.4064/sm-17-2-151-164
  4. Bombal F., Emmanuele G., 10.1080/16073606.1997.9631856, Quaestiones Math. 20 (1997), no. 1, 85–93. MR1454563DOI10.1080/16073606.1997.9631856
  5. Bourgain J., New Classes of p -Spaces, Lecture Notes in Mathematics, 889, Springer, Berlin, 1981. MR0639014
  6. Bourgain J., Diestel J., 10.1002/mana.19841190105, Math. Nachr. 119 (1984), 55–58. Zbl0601.47019MR0774176DOI10.1002/mana.19841190105
  7. Carrión H., Galindo P., Laurenço M. L., 10.4064/sm184-3-1, Studia Math. 184 (2008), no. 3, 205–216. MR2369139DOI10.4064/sm184-3-1
  8. Castillo J. M. F., Sánchez F., Dunford–Pettis-like properties of continuous vector function spaces, Rev. Mat. Univ. Complut. Madrid 6 (1993), no. 1, 43–59. MR1245024
  9. Cembranos P., C ( K , E ) contains a complemented copy of c 0 , Proc. Amer. Math Soc. 91 (1984), no. 4, 556–558. MR0746089
  10. Cilia R., Emmanuele G., 10.4064/cm6184-12-2015, Colloq. Math. 146 (2017), no. 2, 239–252. MR3622375DOI10.4064/cm6184-12-2015
  11. Diestel J., A survey of results related to the Dunford–Pettis property, Proc. of Conf. on Integration, Topology, and Geometry in Linear Spaces, Univ. North Carolina, Chapel Hill, 1979, Contemp. Math. 2 Amer. Math. Soc., Providence, 1980, pages 15–60. MR0621850
  12. Diestel J., Sequences and Series in Banach Spaces, Graduate Texts in Mathematics, 92, Springer, New York, 1984. MR0737004
  13. Diestel J., Jarchow H., Tonge A., Absolutely Summing Operators, Cambridge Studies in Advanced Mathematics, 43, Cambridge University Press, Cambridge, 1995. Zbl1139.47021MR1342297
  14. Diestel J., Uhl J. J., Jr., Vector Measures, Mathematical Surveys, 15, American Mathematical Society, Providence, 1977. Zbl0521.46035MR0453964
  15. Emmanuele G., 10.1017/S0305004100075435, Math. Proc. Cambridge. Philos. Soc. 111 (1992), no. 2, 331–335. MR1142753DOI10.1017/S0305004100075435
  16. Fourie J. H., Zeekoei E. D., 10.2989/16073606.2013.779611, Quaest. Math. 37 (2014), no. 3, 349–358. MR3285289DOI10.2989/16073606.2013.779611
  17. Fourie J. H., Zeekoei E. D., 10.2989/16073606.2017.1301591, Quaest. Math. 40 (2017), no. 5, 563–579. MR3691468DOI10.2989/16073606.2017.1301591
  18. Ghenciu I., Property (wL) and the reciprocal Dunford–Pettis property in projective tensor products, Comment. Math. Univ. Carolin. 56 (2015), no. 3, 319–329. MR3390279
  19. Ghenciu I., A note on some isomorphic properties in projective tensor products, Extracta Math. 32 (2017), no. 1, 1–24. MR3726522
  20. Ghenciu I., 10.2989/16073606.2017.1402383, Quaest. Math. 41 (2018), no. 6, 811–828. MR3857131DOI10.2989/16073606.2017.1402383
  21. Ghenciu I., 10.15352/aot.1802-1318, Adv. Oper. Theory 4 (2019), no. 2, 369–387. MR3883141DOI10.15352/aot.1802-1318
  22. Ghenciu I., Lewis P., 10.4064/ba56-3-7, Bull. Pol. Acad. Sci. Math. 56 (2008), no. 3–4, 239–256. Zbl1167.46016MR2481977DOI10.4064/ba56-3-7
  23. Ghenciu I., Lewis P., 10.4064/cm126-2-7, Colloq. Math. 126 (2012), no. 2, 231–256. Zbl1256.46009MR2924252DOI10.4064/cm126-2-7
  24. Kačena M., On sequentially Right Banach spaces, Extracta Math. 26 (2011), no. 1, 1–27. MR2908388
  25. Pełczyński A., Banach spaces on which every unconditionally converging operator is weakly compact, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 10 (1962), 641–648. Zbl0107.32504MR0149295
  26. Pełczyński A., Semadeni Z., 10.4064/sm-18-2-211-222, Studia Math. 18 (1959), 211–222. MR0107806DOI10.4064/sm-18-2-211-222
  27. Peralta A. M., Villanueva I., Wright J. D. M., Ylinen K., 10.1016/j.jmaa.2006.02.066, J. Math. Anal. Appl. 325 (2007), no. 2, 968–974. MR2270063DOI10.1016/j.jmaa.2006.02.066
  28. Rosenthal H. P., 10.2307/2373824, Amer. J. Math. 99 (1977), no. 2, 362–377. MR0438113DOI10.2307/2373824
  29. Ryan R. A., Introduction to Tensor Products of Banach Spaces, Springer Monographs in Mathematics, Springer, London, 2002. Zbl1090.46001MR1888309
  30. Salimi M., Moshtaghioun S. M., 10.15352/bjma/1313363004, Banach J. Math. Anal. 5 (2011), no. 2, 84–92. MR2792501DOI10.15352/bjma/1313363004
  31. Salimi M., Moshtaghioun S. M., A new class of Banach spaces and its relation with some geometric properties of Banach spaces, Hindawi Publishing Corporation, Abstr. Appl. Anal. (2012), Article ID 212957, 8 pages. MR2910729
  32. Schlumprecht T., Limited Sets in Banach Spaces, Ph.D. Dissertation, Ludwigs-Maxmilians-Universität, Münich, 1987. 
  33. Wen Y., Chen J., Characterizations of Banach spaces with relatively compact Dunford–Pettis sets, Adv. Math. (China) 45 (2016), no. 1, 122–132. MR3483491
  34. Wojtaszczyk P., Banach Spaces for Analysts, Cambridge Studies in Advanced Mathematics, 25, Cambridge University Press, Cambridge, 1991. MR1144277

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.