Hyperspace selections avoiding points
Commentationes Mathematicae Universitatis Carolinae (2022)
- Volume: 62 63, Issue: 3, page 351-364
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topGutev, Valentin. "Hyperspace selections avoiding points." Commentationes Mathematicae Universitatis Carolinae 62 63.3 (2022): 351-364. <http://eudml.org/doc/299031>.
@article{Gutev2022,
abstract = {We deal with a hyperspace selection problem in the setting of connected spaces. We present two solutions of this problem illustrating the difference between selections for the nonempty closed sets, and those for the at most two-point sets. In the first case, we obtain a characterisation of compact orderable spaces. In the latter case --- that of selections for at most two-point sets, the same selection property is equivalent to the existence of a ternary relation on the space, known as a cyclic order, and gives a characterisation of the so called weakly cyclically orderable spaces.},
author = {Gutev, Valentin},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {Vietoris topology; continuous selection; weak selection; weakly orderable space; weakly cyclically orderable space},
language = {eng},
number = {3},
pages = {351-364},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Hyperspace selections avoiding points},
url = {http://eudml.org/doc/299031},
volume = {62 63},
year = {2022},
}
TY - JOUR
AU - Gutev, Valentin
TI - Hyperspace selections avoiding points
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2022
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 62 63
IS - 3
SP - 351
EP - 364
AB - We deal with a hyperspace selection problem in the setting of connected spaces. We present two solutions of this problem illustrating the difference between selections for the nonempty closed sets, and those for the at most two-point sets. In the first case, we obtain a characterisation of compact orderable spaces. In the latter case --- that of selections for at most two-point sets, the same selection property is equivalent to the existence of a ternary relation on the space, known as a cyclic order, and gives a characterisation of the so called weakly cyclically orderable spaces.
LA - eng
KW - Vietoris topology; continuous selection; weak selection; weakly orderable space; weakly cyclically orderable space
UR - http://eudml.org/doc/299031
ER -
References
top- Brouwer A. E., A characterization of connected (weakly) orderable spaces, Math. Centrum, Amsterdam, Afd. zuivere Wisk. ZW 10/71 (1971), 7 pages.
- Brouwer A. E., On the topological characterization of the real line, Math. Centrum, Amsterdam, Afd. zuivere Wisk. ZW 8/71 (1971), 6 pages.
- Buhagiar D., Gutev V., 10.21099/tkbjm/1506353557, Tsukuba J. Math. 41 (2017), no. 1, 1–20. MR3705772DOI10.21099/tkbjm/1506353557
- Čech E., Topological Spaces, Publishing House of the Czechoslovak Academy of Sciences, Praha, Interscience Publishers John Wiley & Sons, London, 1966. MR0211373
- Čoban M. M., Many-valued mappings and Borel sets, Trans. Mosc. Math. Soc. 22 (1970), 258–280. MR0372812
- van Dalen J., Wattel E., 10.1016/0016-660X(73)90022-6, General Topology and Appl. 3 (1973), 347–354. MR0341431DOI10.1016/0016-660X(73)90022-6
- Duda R., 10.4064/fm-63-3-295-309, Fund. Math. 63 (1968), 295–309. MR0235524DOI10.4064/fm-63-3-295-309
- Eilenberg S., 10.2307/2371274, Amer. J. Math. 63 (1941), 39–45. MR0003201DOI10.2307/2371274
- Engelking R., Heath R. W., Michael E., 10.1007/BF01425452, Invent. Math. 6 (1968), 150–158. MR0244959DOI10.1007/BF01425452
- García-Ferreira S., Gutev V., Nogura T., Sanchis M., Tomita A., 10.1016/S0166-8641(01)00141-9, Proc. of the International Conf. on Topology and Its Applications, Yokohama, 1999, Topology Appl. 122 (2002), no. 1–2, 157–181. MR1919299DOI10.1016/S0166-8641(01)00141-9
- Gutev V., 10.4064/fm196-3-4, Fund. Math. 196 (2007), no. 3, 275–287. MR2353859DOI10.4064/fm196-3-4
- Gutev V., Selections and hyperspaces, Recent Progress in General Topology, III, Atlantis Press, Paris, 2014, pages 535–579. MR3205492
- Gutev V., Selections and approaching points in products, Comment. Math. Univ. Carolin. 57 (2016), no. 1, 89–95. MR3478342
- Gutev V., 10.1016/j.topol.2017.09.023, Topology Appl. 231 (2017), 306–315. MR3712970DOI10.1016/j.topol.2017.09.023
- Gutev V., Nogura T., 10.4995/agt.2001.2150, Appl. Gen. Topol. 2 (2001), no. 2, 205–218. MR1890037DOI10.4995/agt.2001.2150
- Gutev V., Nogura T., 10.1112/S002557930001559X, Mathematika 51 (2004), no. 1–2, 163–169. MR2220220DOI10.1112/S002557930001559X
- Gutev V., Nogura T., 10.1016/j.topol.2009.04.050, Topology Appl. 157 (2010), no. 1, 53–61. MR2556079DOI10.1016/j.topol.2009.04.050
- Gutev V., Nogura T., Weak orderability of topological spaces, Topology Appl. 157 (2010), no. 8, 1249–1274. MR2610437
- Hocking J. G., Young G. S., Topology, Addison–Wesley Publishing, London, 1961. Zbl0718.55001MR0125557
- Huntington E. V., 10.1073/pnas.2.11.630, Proc. Natl. Acad. Sci. USA 2 (1916), 630–631. DOI10.1073/pnas.2.11.630
- Huntington E. V., 10.1073/pnas.10.2.74, Proc. Natl. Acad. Sci. USA 10 (1924), 74–78. DOI10.1073/pnas.10.2.74
- Kok H., Connected Orderable Spaces, Mathematical Centre Tracts, 49, Mathematisch Centrum, Amsterdam, 1973. MR0339099
- Michael E., 10.1090/S0002-9947-1951-0042109-4, Trans. Amer. Math. Soc. 71 (1951), 152–182. Zbl0043.37902MR0042109DOI10.1090/S0002-9947-1951-0042109-4
- van Mill J., Wattel E., 10.1090/S0002-9939-1981-0627702-4, Proc. Amer. Math. Soc. 83 (1981), no. 3, 601–605. MR0627702DOI10.1090/S0002-9939-1981-0627702-4
- Nadler S. B., Jr., Continuum Theory, An Introduction, Monographs and Textbooks in Pure and Applied Mathematics, 158, Marcel Dekker, New York, 1992. Zbl0819.54015MR1192552
- Nogura T., Shakhmatov D., 10.1007/BF02977032, Rend. Circ. Mat. Palermo (2) 46 (1997), no. 2, 317–328. MR1617361DOI10.1007/BF02977032
- Whyburn G. T., 10.1090/S0002-9947-1928-1501448-5, Trans. Amer. Math. Soc. 30 (1928), no. 3, 597–609. MR1501448DOI10.1090/S0002-9947-1928-1501448-5
- Willard S., General Topology, Addison–Wesley Publishing, London, 1970. Zbl1052.54001MR0264581
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.