Hyperspace selections avoiding points

Valentin Gutev

Commentationes Mathematicae Universitatis Carolinae (2022)

  • Volume: 62 63, Issue: 3, page 351-364
  • ISSN: 0010-2628

Abstract

top
We deal with a hyperspace selection problem in the setting of connected spaces. We present two solutions of this problem illustrating the difference between selections for the nonempty closed sets, and those for the at most two-point sets. In the first case, we obtain a characterisation of compact orderable spaces. In the latter case --- that of selections for at most two-point sets, the same selection property is equivalent to the existence of a ternary relation on the space, known as a cyclic order, and gives a characterisation of the so called weakly cyclically orderable spaces.

How to cite

top

Gutev, Valentin. "Hyperspace selections avoiding points." Commentationes Mathematicae Universitatis Carolinae 62 63.3 (2022): 351-364. <http://eudml.org/doc/299031>.

@article{Gutev2022,
abstract = {We deal with a hyperspace selection problem in the setting of connected spaces. We present two solutions of this problem illustrating the difference between selections for the nonempty closed sets, and those for the at most two-point sets. In the first case, we obtain a characterisation of compact orderable spaces. In the latter case --- that of selections for at most two-point sets, the same selection property is equivalent to the existence of a ternary relation on the space, known as a cyclic order, and gives a characterisation of the so called weakly cyclically orderable spaces.},
author = {Gutev, Valentin},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {Vietoris topology; continuous selection; weak selection; weakly orderable space; weakly cyclically orderable space},
language = {eng},
number = {3},
pages = {351-364},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Hyperspace selections avoiding points},
url = {http://eudml.org/doc/299031},
volume = {62 63},
year = {2022},
}

TY - JOUR
AU - Gutev, Valentin
TI - Hyperspace selections avoiding points
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2022
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 62 63
IS - 3
SP - 351
EP - 364
AB - We deal with a hyperspace selection problem in the setting of connected spaces. We present two solutions of this problem illustrating the difference between selections for the nonempty closed sets, and those for the at most two-point sets. In the first case, we obtain a characterisation of compact orderable spaces. In the latter case --- that of selections for at most two-point sets, the same selection property is equivalent to the existence of a ternary relation on the space, known as a cyclic order, and gives a characterisation of the so called weakly cyclically orderable spaces.
LA - eng
KW - Vietoris topology; continuous selection; weak selection; weakly orderable space; weakly cyclically orderable space
UR - http://eudml.org/doc/299031
ER -

References

top
  1. Brouwer A. E., A characterization of connected (weakly) orderable spaces, Math. Centrum, Amsterdam, Afd. zuivere Wisk. ZW 10/71 (1971), 7 pages. 
  2. Brouwer A. E., On the topological characterization of the real line, Math. Centrum, Amsterdam, Afd. zuivere Wisk. ZW 8/71 (1971), 6 pages. 
  3. Buhagiar D., Gutev V., 10.21099/tkbjm/1506353557, Tsukuba J. Math. 41 (2017), no. 1, 1–20. MR3705772DOI10.21099/tkbjm/1506353557
  4. Čech E., Topological Spaces, Publishing House of the Czechoslovak Academy of Sciences, Praha, Interscience Publishers John Wiley & Sons, London, 1966. MR0211373
  5. Čoban M. M., Many-valued mappings and Borel sets, Trans. Mosc. Math. Soc. 22 (1970), 258–280. MR0372812
  6. van Dalen J., Wattel E., 10.1016/0016-660X(73)90022-6, General Topology and Appl. 3 (1973), 347–354. MR0341431DOI10.1016/0016-660X(73)90022-6
  7. Duda R., 10.4064/fm-63-3-295-309, Fund. Math. 63 (1968), 295–309. MR0235524DOI10.4064/fm-63-3-295-309
  8. Eilenberg S., 10.2307/2371274, Amer. J. Math. 63 (1941), 39–45. MR0003201DOI10.2307/2371274
  9. Engelking R., Heath R. W., Michael E., 10.1007/BF01425452, Invent. Math. 6 (1968), 150–158. MR0244959DOI10.1007/BF01425452
  10. García-Ferreira S., Gutev V., Nogura T., Sanchis M., Tomita A., 10.1016/S0166-8641(01)00141-9, Proc. of the International Conf. on Topology and Its Applications, Yokohama, 1999, Topology Appl. 122 (2002), no. 1–2, 157–181. MR1919299DOI10.1016/S0166-8641(01)00141-9
  11. Gutev V., 10.4064/fm196-3-4, Fund. Math. 196 (2007), no. 3, 275–287. MR2353859DOI10.4064/fm196-3-4
  12. Gutev V., Selections and hyperspaces, Recent Progress in General Topology, III, Atlantis Press, Paris, 2014, pages 535–579. MR3205492
  13. Gutev V., Selections and approaching points in products, Comment. Math. Univ. Carolin. 57 (2016), no. 1, 89–95. MR3478342
  14. Gutev V., 10.1016/j.topol.2017.09.023, Topology Appl. 231 (2017), 306–315. MR3712970DOI10.1016/j.topol.2017.09.023
  15. Gutev V., Nogura T., 10.4995/agt.2001.2150, Appl. Gen. Topol. 2 (2001), no. 2, 205–218. MR1890037DOI10.4995/agt.2001.2150
  16. Gutev V., Nogura T., 10.1112/S002557930001559X, Mathematika 51 (2004), no. 1–2, 163–169. MR2220220DOI10.1112/S002557930001559X
  17. Gutev V., Nogura T., 10.1016/j.topol.2009.04.050, Topology Appl. 157 (2010), no. 1, 53–61. MR2556079DOI10.1016/j.topol.2009.04.050
  18. Gutev V., Nogura T., Weak orderability of topological spaces, Topology Appl. 157 (2010), no. 8, 1249–1274. MR2610437
  19. Hocking J. G., Young G. S., Topology, Addison–Wesley Publishing, London, 1961. Zbl0718.55001MR0125557
  20. Huntington E. V., 10.1073/pnas.2.11.630, Proc. Natl. Acad. Sci. USA 2 (1916), 630–631. DOI10.1073/pnas.2.11.630
  21. Huntington E. V., 10.1073/pnas.10.2.74, Proc. Natl. Acad. Sci. USA 10 (1924), 74–78. DOI10.1073/pnas.10.2.74
  22. Kok H., Connected Orderable Spaces, Mathematical Centre Tracts, 49, Mathematisch Centrum, Amsterdam, 1973. MR0339099
  23. Michael E., 10.1090/S0002-9947-1951-0042109-4, Trans. Amer. Math. Soc. 71 (1951), 152–182. Zbl0043.37902MR0042109DOI10.1090/S0002-9947-1951-0042109-4
  24. van Mill J., Wattel E., 10.1090/S0002-9939-1981-0627702-4, Proc. Amer. Math. Soc. 83 (1981), no. 3, 601–605. MR0627702DOI10.1090/S0002-9939-1981-0627702-4
  25. Nadler S. B., Jr., Continuum Theory, An Introduction, Monographs and Textbooks in Pure and Applied Mathematics, 158, Marcel Dekker, New York, 1992. Zbl0819.54015MR1192552
  26. Nogura T., Shakhmatov D., 10.1007/BF02977032, Rend. Circ. Mat. Palermo (2) 46 (1997), no. 2, 317–328. MR1617361DOI10.1007/BF02977032
  27. Whyburn G. T., 10.1090/S0002-9947-1928-1501448-5, Trans. Amer. Math. Soc. 30 (1928), no. 3, 597–609. MR1501448DOI10.1090/S0002-9947-1928-1501448-5
  28. Willard S., General Topology, Addison–Wesley Publishing, London, 1970. Zbl1052.54001MR0264581

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.