On the class of order almost L-weakly compact operators

Kamal El Fahri; Hassan Khabaoui; Jawad H'michane

Commentationes Mathematicae Universitatis Carolinae (2022)

  • Volume: 62 63, Issue: 4, page 459-471
  • ISSN: 0010-2628

Abstract

top
We introduce a new class of operators that generalizes L-weakly compact operators, which we call order almost L-weakly compact. We give some characterizations of this class and we show that this class of operators satisfies the domination problem.

How to cite

top

El Fahri, Kamal, Khabaoui, Hassan, and H'michane, Jawad. "On the class of order almost L-weakly compact operators." Commentationes Mathematicae Universitatis Carolinae 62 63.4 (2022): 459-471. <http://eudml.org/doc/299045>.

@article{ElFahri2022,
abstract = {We introduce a new class of operators that generalizes L-weakly compact operators, which we call order almost L-weakly compact. We give some characterizations of this class and we show that this class of operators satisfies the domination problem.},
author = {El Fahri, Kamal, Khabaoui, Hassan, H'michane, Jawad},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {order bounded weakly convergent sequence; L-weakly compact set; order almost L-weakly compact operator; L-weakly compact operator},
language = {eng},
number = {4},
pages = {459-471},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {On the class of order almost L-weakly compact operators},
url = {http://eudml.org/doc/299045},
volume = {62 63},
year = {2022},
}

TY - JOUR
AU - El Fahri, Kamal
AU - Khabaoui, Hassan
AU - H'michane, Jawad
TI - On the class of order almost L-weakly compact operators
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2022
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 62 63
IS - 4
SP - 459
EP - 471
AB - We introduce a new class of operators that generalizes L-weakly compact operators, which we call order almost L-weakly compact. We give some characterizations of this class and we show that this class of operators satisfies the domination problem.
LA - eng
KW - order bounded weakly convergent sequence; L-weakly compact set; order almost L-weakly compact operator; L-weakly compact operator
UR - http://eudml.org/doc/299045
ER -

References

top
  1. Aliprantis C. D., Burkinshaw O., Positive Operators, Springer, Dordrecht, 2006. Zbl1098.47001MR2262133
  2. Aqzzouz B., Elbour A., 10.1007/s12215-010-0020-4, Rend. Circ. Mat. Palermo (2) 59 (2010), no. 2, 267–275. MR2670695DOI10.1007/s12215-010-0020-4
  3. Aqzzouz B., Elbour A., H’michane J., 10.1016/j.jmaa.2008.12.063, J. Math. Anal. Appl. 354 (2009), no. 1, 295–300. MR2510440DOI10.1016/j.jmaa.2008.12.063
  4. Aqzzouz B., H'michane J., 10.1017/S0017089508004576, Glasg. Math. J. 51 (2009), no. 1, 101–108. MR2471680DOI10.1017/S0017089508004576
  5. Bouras K., Lhaimer D., Moussa M., 10.1007/s11117-018-0586-1, Positivity 22 (2018), 1433–1443. MR3863626DOI10.1007/s11117-018-0586-1
  6. Dodds P. G., Fremlin D. H., 10.1007/BF02760610, Israel J. Math. 34 (1979), no. 4, 287–320. MR0570888DOI10.1007/BF02760610
  7. Elbour A., Afkir F., Sabiri M., 10.1007/s11117-019-00671-7, Positivity 24 (2020), 141–149. MR4052686DOI10.1007/s11117-019-00671-7
  8. El Fahri K., Khabaoui H., H'michane J., Some characterizations of L-weakly compact sets using the unbounded absolute weak convergence and applications, Positivity 26 (2022), no. 3, Paper No. 42, 13 pages. MR4412414
  9. El Fahri K., Oughajji F. Z., On the class of almost order (L) sets and applications, Rendiconti del Circolo Matematico di Palermo Series 2 70 (2021), 235–245. MR4234309
  10. Lhaimer D., Bouras K., Moussa M., 10.1007/s11117-021-00829-2, Positivity 25 (2021), no. 4, 1569–1578. MR4301150DOI10.1007/s11117-021-00829-2
  11. Meyer-Nieberg P., Banach Lattices, Universitext, Springer, Berlin, 1991. Zbl0743.46015MR1128093
  12. Wnuk W., Banach lattices with properties of the Schur type---a survey, Confer. Sem. Mat. Univ. Bari (1993), No. 249, 25 pages. MR1230964
  13. Wnuk W., Remarks on J. R. Holub's paper concerning Dunford–Pettis operators, Math. Japon. 38 (1993), no. 6, 1077–1080. MR1250331
  14. Zabeti O., 10.1007/s11117-017-0524-7, Positivity 22 (2018), no. 2, 501–505. MR3780811DOI10.1007/s11117-017-0524-7
  15. Zabeti O., 10.1007/s11117-021-00858-x, Positivity 25 (2021), no. 5, 1989–2001. MR4338556DOI10.1007/s11117-021-00858-x

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.