On the class of order almost L-weakly compact operators
Kamal El Fahri; Hassan Khabaoui; Jawad Hmichane
Commentationes Mathematicae Universitatis Carolinae (2022)
- Volume: 62 63, Issue: 4, page 459-471
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topEl Fahri, Kamal, Khabaoui, Hassan, and Hmichane, Jawad. "On the class of order almost L-weakly compact operators." Commentationes Mathematicae Universitatis Carolinae 62 63.4 (2022): 459-471. <http://eudml.org/doc/299045>.
@article{ElFahri2022,
abstract = {We introduce a new class of operators that generalizes L-weakly compact operators, which we call order almost L-weakly compact. We give some characterizations of this class and we show that this class of operators satisfies the domination problem.},
author = {El Fahri, Kamal, Khabaoui, Hassan, Hmichane, Jawad},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {order bounded weakly convergent sequence; L-weakly compact set; order almost L-weakly compact operator; L-weakly compact operator},
language = {eng},
number = {4},
pages = {459-471},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {On the class of order almost L-weakly compact operators},
url = {http://eudml.org/doc/299045},
volume = {62 63},
year = {2022},
}
TY - JOUR
AU - El Fahri, Kamal
AU - Khabaoui, Hassan
AU - Hmichane, Jawad
TI - On the class of order almost L-weakly compact operators
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2022
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 62 63
IS - 4
SP - 459
EP - 471
AB - We introduce a new class of operators that generalizes L-weakly compact operators, which we call order almost L-weakly compact. We give some characterizations of this class and we show that this class of operators satisfies the domination problem.
LA - eng
KW - order bounded weakly convergent sequence; L-weakly compact set; order almost L-weakly compact operator; L-weakly compact operator
UR - http://eudml.org/doc/299045
ER -
References
top- Aliprantis C. D., Burkinshaw O., Positive Operators, Springer, Dordrecht, 2006. Zbl1098.47001MR2262133
- Aqzzouz B., Elbour A., 10.1007/s12215-010-0020-4, Rend. Circ. Mat. Palermo (2) 59 (2010), no. 2, 267–275. MR2670695DOI10.1007/s12215-010-0020-4
- Aqzzouz B., Elbour A., H’michane J., 10.1016/j.jmaa.2008.12.063, J. Math. Anal. Appl. 354 (2009), no. 1, 295–300. MR2510440DOI10.1016/j.jmaa.2008.12.063
- Aqzzouz B., H'michane J., 10.1017/S0017089508004576, Glasg. Math. J. 51 (2009), no. 1, 101–108. MR2471680DOI10.1017/S0017089508004576
- Bouras K., Lhaimer D., Moussa M., 10.1007/s11117-018-0586-1, Positivity 22 (2018), 1433–1443. MR3863626DOI10.1007/s11117-018-0586-1
- Dodds P. G., Fremlin D. H., 10.1007/BF02760610, Israel J. Math. 34 (1979), no. 4, 287–320. MR0570888DOI10.1007/BF02760610
- Elbour A., Afkir F., Sabiri M., 10.1007/s11117-019-00671-7, Positivity 24 (2020), 141–149. MR4052686DOI10.1007/s11117-019-00671-7
- El Fahri K., Khabaoui H., H'michane J., Some characterizations of L-weakly compact sets using the unbounded absolute weak convergence and applications, Positivity 26 (2022), no. 3, Paper No. 42, 13 pages. MR4412414
- El Fahri K., Oughajji F. Z., On the class of almost order (L) sets and applications, Rendiconti del Circolo Matematico di Palermo Series 2 70 (2021), 235–245. MR4234309
- Lhaimer D., Bouras K., Moussa M., 10.1007/s11117-021-00829-2, Positivity 25 (2021), no. 4, 1569–1578. MR4301150DOI10.1007/s11117-021-00829-2
- Meyer-Nieberg P., Banach Lattices, Universitext, Springer, Berlin, 1991. Zbl0743.46015MR1128093
- Wnuk W., Banach lattices with properties of the Schur type---a survey, Confer. Sem. Mat. Univ. Bari (1993), No. 249, 25 pages. MR1230964
- Wnuk W., Remarks on J. R. Holub's paper concerning Dunford–Pettis operators, Math. Japon. 38 (1993), no. 6, 1077–1080. MR1250331
- Zabeti O., 10.1007/s11117-017-0524-7, Positivity 22 (2018), no. 2, 501–505. MR3780811DOI10.1007/s11117-017-0524-7
- Zabeti O., 10.1007/s11117-021-00858-x, Positivity 25 (2021), no. 5, 1989–2001. MR4338556DOI10.1007/s11117-021-00858-x
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.