A family of Lyapunov-based control schemes for maximum power point tracking in buck converters

Jorge Álvarez; Jorge Ruiz; Miguel Bernal

Kybernetika (2023)

  • Volume: 59, Issue: 2, page 294-313
  • ISSN: 0023-5954

Abstract

top
This paper presents a novel family of Lyapunov-based controllers for the maximum power point tracking problem in the buck converter case. The solar power generation system here considered is composed by a stand-alone photovoltaic panel connected to a DC/DC buck converter. Lyapunov function candidates depending on the output are considered to develop conditions which, in some cases, can be expressed as linear matrix inequalities; these conditions guarantee that the output goes asymptotically to zero, thus implying that the MPPT is achieved. Simulation and real-time results are presented, which validate the effectiveness of the proposals.

How to cite

top

Álvarez, Jorge, Ruiz, Jorge, and Bernal, Miguel. "A family of Lyapunov-based control schemes for maximum power point tracking in buck converters." Kybernetika 59.2 (2023): 294-313. <http://eudml.org/doc/299067>.

@article{Álvarez2023,
abstract = {This paper presents a novel family of Lyapunov-based controllers for the maximum power point tracking problem in the buck converter case. The solar power generation system here considered is composed by a stand-alone photovoltaic panel connected to a DC/DC buck converter. Lyapunov function candidates depending on the output are considered to develop conditions which, in some cases, can be expressed as linear matrix inequalities; these conditions guarantee that the output goes asymptotically to zero, thus implying that the MPPT is achieved. Simulation and real-time results are presented, which validate the effectiveness of the proposals.},
author = {Álvarez, Jorge, Ruiz, Jorge, Bernal, Miguel},
journal = {Kybernetika},
keywords = {solar energy; photovoltaic panel; maximum power point tracking; Lyapunov method; convex model; linear matrix inequalities},
language = {eng},
number = {2},
pages = {294-313},
publisher = {Institute of Information Theory and Automation AS CR},
title = {A family of Lyapunov-based control schemes for maximum power point tracking in buck converters},
url = {http://eudml.org/doc/299067},
volume = {59},
year = {2023},
}

TY - JOUR
AU - Álvarez, Jorge
AU - Ruiz, Jorge
AU - Bernal, Miguel
TI - A family of Lyapunov-based control schemes for maximum power point tracking in buck converters
JO - Kybernetika
PY - 2023
PB - Institute of Information Theory and Automation AS CR
VL - 59
IS - 2
SP - 294
EP - 313
AB - This paper presents a novel family of Lyapunov-based controllers for the maximum power point tracking problem in the buck converter case. The solar power generation system here considered is composed by a stand-alone photovoltaic panel connected to a DC/DC buck converter. Lyapunov function candidates depending on the output are considered to develop conditions which, in some cases, can be expressed as linear matrix inequalities; these conditions guarantee that the output goes asymptotically to zero, thus implying that the MPPT is achieved. Simulation and real-time results are presented, which validate the effectiveness of the proposals.
LA - eng
KW - solar energy; photovoltaic panel; maximum power point tracking; Lyapunov method; convex model; linear matrix inequalities
UR - http://eudml.org/doc/299067
ER -

References

top
  1. Abdelaziz, A. Y., Almoataz, Y., Modern Maximum Power Point Tracking Techniques for Photovoltaic Energy Systems., Springer, 2020. 
  2. Algazar, M. M, El-Halim, H. A., Salem, M. E. El Kotb, al., et, , Int. J. Electr.Power Energy Systems 39 (2012), 1, 21-28. DOI
  3. Artstein, Z., , Nonlinear Analysis: Theory Methods Appl. 7 (1983), 11, 1163-1173. Zbl0525.93053MR0721403DOI
  4. Bahgat, A. B. G., Helwa, N. H., Ahmad, G. E., Shenawy, E. T. El, , Renewable Energy 30 (2008), 8, 1257-1268. DOI
  5. Benedek, J., Sebestyén, T.-T., Bartók, B., , Renewable Sustainable Energy Rev. 90 (2018), 516-535. DOI
  6. Bernal, M., Hušek, P., Kučera, V., , Kybernetika 42 (2006), 6, 665-672. MR2296507DOI
  7. Bernal, M., Sala, A., Lendek, Z., Guerra, T. M., Analysis and Synthesis of Nonlinear Control Systems: A Convex Optimisation Approach., Springer, Cham 2022. MR4397563
  8. Bharath, K. R., Suresh, E., Design and implementation of improved fractional open circuit voltage based maximum power point tracking algorithm for photovoltaic applications., Int. J. Renewable Energy Ress. (IJRER) 7 (2017), 3, 1108-1113. 
  9. Boyd, S., ElGhaoui, L., Féron, E., Balakrishnan, V., Linear Matrix Inequalities in System and Control Theory., Studies in Applied Mathematics 15, Philadelphia 1994. MR1284712
  10. Chiu, Ch. S., , IEEE Trans. Energy Convers. 25 (2010). 4, 1123-1132. DOI
  11. Chiu, Ch. S., Ouyang, Y. L., , IEEE Trans. Control Systems Technol. 19 (2011), 6, 1516-1526. DOI
  12. M, Z., Dalala, Zahid, Z. U., Yu, W., Cho, Y., Lai, J.-S., , IEEE Trans. Energy Convers. 28 (2013), 3, 756-767. DOI
  13. Elgendy, M. A., Zahawi, B., Atkinson, D. J., , IEEE Trans. Sustainable Energy 4 (2012), 1, :108-117. DOI
  14. Faranda, R., Leva, S., Maugeri, V., MPPT techniques for PV systems: Energetic and cost comparison., In: 2008 IEEE Power and Energy Society General Meeting-Conversion and Delivery of Electrical Energy in the 21st Century,IEEE 2008, pp. 1-6. 
  15. Gahinet, P., Nemirovsky, A., Laub, A. J., Chilali, M., LMI Control Toolbox., Math Works, Natick 1995. 
  16. Gupta, A. K., Saxena, R., , In: 2016 International Conference on Innovation and Challenges in Cyber Security (ICICCS-INBUSH), IEEE 2016, pp. 270-273. DOI
  17. Khalil, H. K., Nonlinear Control., Pearson Higher Ed, 2014. 
  18. Lalili, D., Mellit, A., Lourci, N., Medjahed, B., Berkouk, E. M., , Renewable Energy 36 (2011), 12, 3282-3291. DOI
  19. Mahmoud, Y., Abdelwahed, M., El-Saadany, E. F., An enhanced mppt method combining model-based and heuristic techniques., IEEE Trans. Sustainable Energy 7 (2015), 2, 76-585. 
  20. Mao, M., Zhang, L., Yang, L., Chong, B., Huang, H., Zhou, L., , Solar Energy 209 (2020), 334-349. DOI
  21. Mokhtari, Y., Rekioua, D., , Renewable Energy 126 (2018), 1055-1063. DOI
  22. Owusu, P. A., Asumadu-Sarkodie, S., , Cogent Engrg. 3 (2016), 1, 1167990. DOI
  23. Pandey, A., Dasgupta, N., Mukerjee, A. K., High-performance algorithms for drift avoidance and fast tracking in solar mppt system 
  24. Pilakkat, D., Kanthalakshmi, S., , Solar Energy 178 (2019), 37-47. DOI
  25. Qazi, A., Hussain, F., Rahim, N. A. B. D., Hardaker, G., Alghazzawi, D., Shaban, K., Haruna, K., , IEEE Acess 7 (2019), 63837-63851. DOI
  26. Salimi, M., , Solar Energy 173 (2018), 246-255. DOI
  27. Sandali, A., Oukhoya, T., Cheriti, A., Modeling and design of pv grid connected system using a modified fractional short-circuit current mppt., In: 2014 International Renewable and Sustainable Energy Conference (IRSEC), IEEE 2014, pp. 224-229. 
  28. Sera, D., Mathe, L., Kerekes, T., Spataru, S. V., Teodorescu, R., , IEEE J. Photovoltaics 3 (2013), 3, :1070-1078. DOI
  29. Sokolov, M., Shmilovitz, D., , IEEE Trans. Energy Convers. 23 (2008), 4, 1105-1107. DOI
  30. Sontag, E. D., , Systems Control Lett. 13 (1989), 2, 117-123. MR1014237DOI
  31. Taniguchi, T., Tanaka, K., Wang, H. O., , IEEE Trans. Fuzzy Systems 9 (2001), 4, 525-538. DOI

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.