Nonquadratic stabilization of continuous-time systems in the Takagi-Sugeno form
Miguel Bernal; Petr Hušek; Vladimír Kučera
Kybernetika (2006)
- Volume: 42, Issue: 6, page 665-672
- ISSN: 0023-5954
Access Full Article
topAbstract
topHow to cite
topBernal, Miguel, Hušek, Petr, and Kučera, Vladimír. "Nonquadratic stabilization of continuous-time systems in the Takagi-Sugeno form." Kybernetika 42.6 (2006): 665-672. <http://eudml.org/doc/33831>.
@article{Bernal2006,
abstract = {This paper presents a relaxed scheme for controller synthesis of continuous- time systems in the Takagi-Sugeno form, based on non-quadratic Lyapunov functions and a non-PDC control law. The relaxations here provided allow state and input dependence of the membership functions’ derivatives, as well as independence on initial conditions when input constraints are needed. Moreover, the controller synthesis is attainable via linear matrix inequalities, which are efficiently solved by commercially available software.},
author = {Bernal, Miguel, Hušek, Petr, Kučera, Vladimír},
journal = {Kybernetika},
keywords = {fuzzy models; nonquadratic stabilization; nonlinear control; Lyapunov function; linear matrix inequality (LMI); fuzzy model; nonquadratic stabilization; nonlinear control; Lyapunov function; linear matrix inequality (LMI)},
language = {eng},
number = {6},
pages = {665-672},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Nonquadratic stabilization of continuous-time systems in the Takagi-Sugeno form},
url = {http://eudml.org/doc/33831},
volume = {42},
year = {2006},
}
TY - JOUR
AU - Bernal, Miguel
AU - Hušek, Petr
AU - Kučera, Vladimír
TI - Nonquadratic stabilization of continuous-time systems in the Takagi-Sugeno form
JO - Kybernetika
PY - 2006
PB - Institute of Information Theory and Automation AS CR
VL - 42
IS - 6
SP - 665
EP - 672
AB - This paper presents a relaxed scheme for controller synthesis of continuous- time systems in the Takagi-Sugeno form, based on non-quadratic Lyapunov functions and a non-PDC control law. The relaxations here provided allow state and input dependence of the membership functions’ derivatives, as well as independence on initial conditions when input constraints are needed. Moreover, the controller synthesis is attainable via linear matrix inequalities, which are efficiently solved by commercially available software.
LA - eng
KW - fuzzy models; nonquadratic stabilization; nonlinear control; Lyapunov function; linear matrix inequality (LMI); fuzzy model; nonquadratic stabilization; nonlinear control; Lyapunov function; linear matrix inequality (LMI)
UR - http://eudml.org/doc/33831
ER -
References
top- Apkarian X., Gahinet X., A convex characterization of gain scheduling Hinf controllers, IEEE Trans. Control Systems 40 (1995), 853–864 (1995) MR1328081
- Begovich O., Sanchez E. N., Maldonado M., 10.1109/87.974334, IEEE Trans. Control Systems Techn. 10 (2002), 14–20 DOI10.1109/87.974334
- Bernal M., Hušek P., Piecewise quadratic stability of affine Takagi–Sugeno fuzzy control systems, In: Proc. Advanced Fuzzy-Neural Control Conference, Oulu 2004, pp.157–162
- Bernal M., Hušek P., Controller synthesis with input and output constraints for fuzzy systems, In: 16th IFAC World Congress DVD-edition, Prague 2005
- Bernal M., Non-quadratic discrete fuzzy controller design performing decay rate, In: FUZZ–IEEE Internat. Conference, Reno 2005, CD edition
- Bernal M., Hušek, P., Kučera V., Non-quadratic design for continuous-time systems in the Takagi–Sugeno form, Submitted to Automatica
- Feng G., 10.1109/TFUZZ.2003.817837, IEEE Trans. Fuzzy Systems 11 (2003), 605–612 DOI10.1109/TFUZZ.2003.817837
- Feng G., 10.1109/TFUZZ.2003.819833, IEEE Trans. Fuzzy Systems 12 (2004), 22–28 DOI10.1109/TFUZZ.2003.819833
- Guerra T. M., Vermeiren L., 10.1016/j.automatica.2003.12.014, Automatica 40 (2004), 823–829 MR2152188DOI10.1016/j.automatica.2003.12.014
- Johansson M., Rantzer, A., Arzen K., 10.1109/91.811241, IEEE Trans. Fuzzy Systems 7 (1999), 713–722 (1999) DOI10.1109/91.811241
- Rantzer A., Johansson M., 10.1109/9.847100, IEEE Trans. Automat. Control 45 (2000), 629–637 Zbl0969.49016MR1764832DOI10.1109/9.847100
- Takagi T., Sugeno M., 10.1109/TSMC.1985.6313399, IEEE Trans. Systems, Man and Cybernet. 15 (1985), 116–132 (1985) Zbl0576.93021DOI10.1109/TSMC.1985.6313399
- Tanaka K., Sugeno M., Stability analysis of fuzzy systems using Lyapunov’s direct method, In: Proc. NAFIPS’90, pp. 133–136
- Tanaka K., Ikeda, T., Wang H. O., 10.1109/91.669023, IEEE Trans. Fuzzy Systems 6 (1998), 250–264 (1998) DOI10.1109/91.669023
- Tanaka K., Hori, T., Wang H. O., 10.1109/TFUZZ.2003.814861, IEEE Trans. Fuzzy Systems 11 (2003), 582–589 DOI10.1109/TFUZZ.2003.814861
- H. O. Wang, Tanaka, K., Griffin M., 10.1109/91.481841, IEEE Trans. Fuzzy Systems 4 (1996), 14–23 (1996) DOI10.1109/91.481841
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.