On fixed figure problems in fuzzy metric spaces

Dhananjay Gopal; Juan Martínez-Moreno; Nihal Özgür

Kybernetika (2023)

  • Volume: 59, Issue: 1, page 110-129
  • ISSN: 0023-5954

Abstract

top
Fixed circle problems belong to a realm of problems in metric fixed point theory. Specifically, it is a problem of finding self mappings which remain invariant at each point of the circle in the space. Recently this problem is well studied in various metric spaces. Our present work is in the domain of the extension of this line of research in the context of fuzzy metric spaces. For our purpose, we first define the notions of a fixed circle and of a fixed Cassini curve then determine suitable conditions which ensure the existence and uniqueness of a fixed circle (resp. a Cassini curve) for the self operators. Moreover, we present a result which prescribed that the fixed point set of fuzzy quasi-nonexpansive mapping is always closed. Our results are supported by examples.

How to cite

top

Gopal, Dhananjay, Martínez-Moreno, Juan, and Özgür, Nihal. "On fixed figure problems in fuzzy metric spaces." Kybernetika 59.1 (2023): 110-129. <http://eudml.org/doc/299070>.

@article{Gopal2023,
abstract = {Fixed circle problems belong to a realm of problems in metric fixed point theory. Specifically, it is a problem of finding self mappings which remain invariant at each point of the circle in the space. Recently this problem is well studied in various metric spaces. Our present work is in the domain of the extension of this line of research in the context of fuzzy metric spaces. For our purpose, we first define the notions of a fixed circle and of a fixed Cassini curve then determine suitable conditions which ensure the existence and uniqueness of a fixed circle (resp. a Cassini curve) for the self operators. Moreover, we present a result which prescribed that the fixed point set of fuzzy quasi-nonexpansive mapping is always closed. Our results are supported by examples.},
author = {Gopal, Dhananjay, Martínez-Moreno, Juan, Özgür, Nihal},
journal = {Kybernetika},
keywords = {fixed circle; Archimedean $t$-norm; $M_h$-triangular fuzzy metric},
language = {eng},
number = {1},
pages = {110-129},
publisher = {Institute of Information Theory and Automation AS CR},
title = {On fixed figure problems in fuzzy metric spaces},
url = {http://eudml.org/doc/299070},
volume = {59},
year = {2023},
}

TY - JOUR
AU - Gopal, Dhananjay
AU - Martínez-Moreno, Juan
AU - Özgür, Nihal
TI - On fixed figure problems in fuzzy metric spaces
JO - Kybernetika
PY - 2023
PB - Institute of Information Theory and Automation AS CR
VL - 59
IS - 1
SP - 110
EP - 129
AB - Fixed circle problems belong to a realm of problems in metric fixed point theory. Specifically, it is a problem of finding self mappings which remain invariant at each point of the circle in the space. Recently this problem is well studied in various metric spaces. Our present work is in the domain of the extension of this line of research in the context of fuzzy metric spaces. For our purpose, we first define the notions of a fixed circle and of a fixed Cassini curve then determine suitable conditions which ensure the existence and uniqueness of a fixed circle (resp. a Cassini curve) for the self operators. Moreover, we present a result which prescribed that the fixed point set of fuzzy quasi-nonexpansive mapping is always closed. Our results are supported by examples.
LA - eng
KW - fixed circle; Archimedean $t$-norm; $M_h$-triangular fuzzy metric
UR - http://eudml.org/doc/299070
ER -

References

top
  1. Abbasi, N., Golshan, H. M., , Kybernetika 52 (2016), 6, 929-942. MR3607855DOI
  2. Abbas, M., Ali, B., Romaguera, S., , Filomat 29 (2015), 6, 1217-1222. MR3359310DOI
  3. Aydi, H., Taş, N., Özgür, N. Y., Mlaiki, N., , Symmetry 11 (2019), 2, 294. MR4269014DOI
  4. Aydi, H., Taş, N., Özgür, N. Y., Mlaiki, N., , Fixed Point Theory 22 (2021), 1, 59-74. MR4269014DOI
  5. Calin, O., Activation Functions., In: Deep Learning Architectures. Springer Series in the Data Sciences. Springer, Cham. 2020, pp. 21-39. MR4240268
  6. Caristi, J., 10.1090/S0002-9947-1976-0394329-4, Trans. Amer. Math. Soc. 215 (1976), 241-251. MR0394329DOI10.1090/S0002-9947-1976-0394329-4
  7. Chaoha, P., Phon-On, A., , J. Math. Anal. Appl. 320 (2006), 2, 983-987. MR2226009DOI
  8. George, A., Veeramani, P., , Fuzzy Sets Systems 64 (1994), 3, 395-399. Zbl0843.54014MR1289545DOI
  9. Grabiec, M., , Fuzzy Sets Systems 27 (1988), 3, 385-389. Zbl0664.54032MR0956385DOI
  10. Gregori, V., Sapena, A., , Fuzzy Sets Systems 125 (2002), 2, 245-252. MR1880341DOI
  11. Gregori, V., Morillas, S., Sapena, A., , Fuzzy Sets Systems 170 (2011), 1, 95-111. Zbl1210.94016MR2775611DOI
  12. Gregori, V., Miñana, J-J., Morillas, S., , Fuzzy Sets System 204 (2012), 71-85. Zbl1259.54001MR2950797DOI
  13. Gregori, V., Miñana, J-J., , Fuzzy Sets Systems 300 (2016), 93-101. MR3226661DOI
  14. Gopal, D., Abbas, M., Imdad, M., ψ -weak contractions in fuzzy metric spaces., Iranian J Fuzzy Syst. 5 (2011), 5, 141-148. MR2907800
  15. Gopal, D., Vetro, C., Some new fixed point theorems in fuzzy metric spaces., Iranian J. Fuzzy Syst. 11 (2014), 3, 95-107. MR3237493
  16. Gopal, D., Martínez-Moreno, J., , Kybernetika 7 (2021), 5, 908-921. MR4376867DOI
  17. Kramosil, I., Michalek, J., Fuzzy metric and statistical metric spaces., Kybernetika 11 (1975), 5, 336-344. MR0410633
  18. Miheţ, D., , Fuzzy Sets Systems 159 (2008), 6, 739-744. MR2410532DOI
  19. Mohamad, S., , J. Comput. Appl. Math. 205 (2007), 1, 161-173. MR2324832DOI
  20. Özgür, N. Y., Taş, N., Çelik, U., New fixed-circle results on S -metric spaces., Bull. Math. Anal. Appl. 9 (2017), 2, 10-23. MR3672224
  21. Özgür, N. Y., Taş, N., , In: AIP Conference Proc., AIP Publishing LLC 2018 (Vol. 1926, No. 1, p. 020048.) DOI
  22. Özgür, N. Y., Taş, N., , Bull. Malays. Math. Sci. Soc. 42 (2019), 4, 1433-1449. MR3963837DOI
  23. Özgür, N., Taş, N., 10.48550/arXiv.2102.05417, arXiv:2102.05417 DOI:10.48550/arXiv.2102.05417 DOI10.48550/arXiv.2102.05417
  24. Özgür, N., , Turkish J. Math. 43 (2019), 6, 2794-2805. MR4038378DOI
  25. Özdemir, N., B.İskender, B., Özgür, N. Y., , Commun. Nonlinear Sci. Numer. Simul. 16 (2011), 12, 4698-4703. MR2820859DOI
  26. Pomdee, K., Sunyeekhan, G., Hirunmasuwan, P., , In: Journal of Physics, Conference Series, IOP Publishing, 2018 (Vol. 1132, No. 1, p.12025). DOI
  27. Schweizer, B., Sklar, A., Probabilistic Metric Spaces., Elsevier, New York 1983. Zbl0546.60010MR0790314
  28. Sharma, S., Sharma, S., Athaiya, A., Activation functions in neural networks., Towards Data Sci. 6 (2017), 12, 310-316. 
  29. Shukla, S., Gopal, D., Sintunavarat, W., , Fuzzy Sets and Systems 350 (2018), 85-94. MR3852589DOI
  30. Tomar, A., Joshi, M., Padaliya, S. K., , J. Appl. Anal. 28 (2022), 1, 57-66. MR4431325DOI
  31. Wang, Z., Guo, Z., Huang, L., Liu, X., , Neural Process Lett. 45 (2017), 3, 1039-1061. DOI
  32. Zhang, Y., Wang, Q. G., , J. Comput. Appl. Math. 231 (2009), 1, 473-477. MR2532684DOI

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.