Finitely silting comodules in quasi-finite comodule category
Czechoslovak Mathematical Journal (2023)
- Volume: 73, Issue: 3, page 695-714
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topYuan, Qianqian, and Yao, Hailou. "Finitely silting comodules in quasi-finite comodule category." Czechoslovak Mathematical Journal 73.3 (2023): 695-714. <http://eudml.org/doc/299097>.
@article{Yuan2023,
abstract = {We introduce the notions of silting comodules and finitely silting comodules in quasi-finite category, and study some properties of them. We investigate the torsion pair and dualities which are related to finitely silting comodules, and give the equivalences among silting comodules, finitely silting comodules, tilting comodules and finitely tilting comodules.},
author = {Yuan, Qianqian, Yao, Hailou},
journal = {Czechoslovak Mathematical Journal},
keywords = {quasi-finite silting comodule; finitely silting comodule; finitely tilting comodule; torsion pair; duality},
language = {eng},
number = {3},
pages = {695-714},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Finitely silting comodules in quasi-finite comodule category},
url = {http://eudml.org/doc/299097},
volume = {73},
year = {2023},
}
TY - JOUR
AU - Yuan, Qianqian
AU - Yao, Hailou
TI - Finitely silting comodules in quasi-finite comodule category
JO - Czechoslovak Mathematical Journal
PY - 2023
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 73
IS - 3
SP - 695
EP - 714
AB - We introduce the notions of silting comodules and finitely silting comodules in quasi-finite category, and study some properties of them. We investigate the torsion pair and dualities which are related to finitely silting comodules, and give the equivalences among silting comodules, finitely silting comodules, tilting comodules and finitely tilting comodules.
LA - eng
KW - quasi-finite silting comodule; finitely silting comodule; finitely tilting comodule; torsion pair; duality
UR - http://eudml.org/doc/299097
ER -
References
top- Adachi, T., Iyama, O., Reiten, I., 10.1112/S0010437X13007422, Compos. Math. 150 (2014), 415-452. (2014) Zbl1330.16004MR3187626DOI10.1112/S0010437X13007422
- Takhman, K. Al, 10.1016/S0022-4049(02)00013-0, J. Pure Appl. Algebra 173 (2002), 245-271. (2002) Zbl1004.16039MR1916479DOI10.1016/S0022-4049(02)00013-0
- Anderson, F. W., Fuller, K. R., 10.1007/978-1-4612-4418-9, Graduate Texts in Mathematics 13. Springer, New York (1974). (1974) Zbl0301.16001MR0417223DOI10.1007/978-1-4612-4418-9
- Hügel, L. Angeleri, Hrbek, M., 10.1093/imrn/rnw147, Int. Math. Res. Not. 2017 (2017), 4131-4151. (2017) Zbl1405.13018MR3671512DOI10.1093/imrn/rnw147
- Hügel, L. Angeleri, Marks, F., Vitória, J., 10.1093/imrn/rnv191, Int. Math. Res. Not. 2016 (2016), 1251-1284. (2016) Zbl1367.16005MR3493448DOI10.1093/imrn/rnv191
- Colby, R. R., Fuller, K. R., 10.1017/CBO9780511546518, Cambridge Tracts in Mathematics 161. Cambridge University Press, Cambridge (2004). (2004) Zbl1069.16001MR2048277DOI10.1017/CBO9780511546518
- Colpi, R., Trlifaj, J., 10.1006/jabr.1995.1368, J. Algebra 178 (1995), 614-634. (1995) Zbl0849.16033MR1359905DOI10.1006/jabr.1995.1368
- Doi, Y., 10.2969/jmsj/03310031, J. Math. Soc. Japan 33 (1981), 31-50. (1981) Zbl0459.16007MR0597479DOI10.2969/jmsj/03310031
- Keller, B., Vossieck, D., Aisles in derived categories, Bull. Soc. Math. Belg., Sér. A 40 (1988), 239-253. (1988) Zbl0671.18003MR0976638
- Krause, H., Saorín, M., 10.1090/conm/229, Trends in the Representation Theory of Finite Dimensional Algebras Contemporary Mathematics 229. AMS, Providence (1998), 227-236. (1998) Zbl0959.16003MR1676223DOI10.1090/conm/229
- Lin, B. I., 10.1016/0021-8693(77)90246-0, J. Algebra 49 (1977), 357-373. (1977) Zbl0369.16010MR0498663DOI10.1016/0021-8693(77)90246-0
- Positselski, L., 10.1007/s10468-017-9736-6, Algebr. Represent. Theory 21 (2018), 737-767. (2018) Zbl1394.16040MR3826725DOI10.1007/s10468-017-9736-6
- Simsom, D., 10.4064/cm90-1-9, Colloq. Math. 90 (2001), 101-150. (2001) Zbl1055.16038MR1874368DOI10.4064/cm90-1-9
- Simson, D., Cotilted coalgebras and tame comodule type, Arab. J. Sci. Eng., Sect. C, Theme Issues 33 (2008), 421-445. (2008) Zbl1186.16039MR2500051
- Takeuchi, M., Morita theorems for categories of comodules, J. Fac. Sci., Univ. Tokyo, Sect. I A 24 (1977), 629-644. (1977) Zbl0385.18007MR0472967
- Wang, M.-Y., Some co-hom functors and classical tilting comodules, Southeast Asian Bull. Math. 22 (1998), 455-468. (1998) Zbl0942.16047MR1811188
- Wang, M., Tilting comodules over semi-perfect coalgebras, Algebra Colloq. 6 (1999), 461-472. (1999) Zbl0945.16034MR1809680
- Wang, M., Morita Equivalence and Its Generalizations, Science Press, Beijing (2001). (2001)
- Yuan, Q. Q., Yao, H.-L., 10.6040/j.issn.1671-9352.0.2021.503, J. Shandong. Univ. 57 (2022), 1-7. (2022) DOI10.6040/j.issn.1671-9352.0.2021.503
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.