Finitely silting comodules in quasi-finite comodule category

Qianqian Yuan; Hailou Yao

Czechoslovak Mathematical Journal (2023)

  • Volume: 73, Issue: 3, page 695-714
  • ISSN: 0011-4642

Abstract

top
We introduce the notions of silting comodules and finitely silting comodules in quasi-finite category, and study some properties of them. We investigate the torsion pair and dualities which are related to finitely silting comodules, and give the equivalences among silting comodules, finitely silting comodules, tilting comodules and finitely tilting comodules.

How to cite

top

Yuan, Qianqian, and Yao, Hailou. "Finitely silting comodules in quasi-finite comodule category." Czechoslovak Mathematical Journal 73.3 (2023): 695-714. <http://eudml.org/doc/299097>.

@article{Yuan2023,
abstract = {We introduce the notions of silting comodules and finitely silting comodules in quasi-finite category, and study some properties of them. We investigate the torsion pair and dualities which are related to finitely silting comodules, and give the equivalences among silting comodules, finitely silting comodules, tilting comodules and finitely tilting comodules.},
author = {Yuan, Qianqian, Yao, Hailou},
journal = {Czechoslovak Mathematical Journal},
keywords = {quasi-finite silting comodule; finitely silting comodule; finitely tilting comodule; torsion pair; duality},
language = {eng},
number = {3},
pages = {695-714},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Finitely silting comodules in quasi-finite comodule category},
url = {http://eudml.org/doc/299097},
volume = {73},
year = {2023},
}

TY - JOUR
AU - Yuan, Qianqian
AU - Yao, Hailou
TI - Finitely silting comodules in quasi-finite comodule category
JO - Czechoslovak Mathematical Journal
PY - 2023
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 73
IS - 3
SP - 695
EP - 714
AB - We introduce the notions of silting comodules and finitely silting comodules in quasi-finite category, and study some properties of them. We investigate the torsion pair and dualities which are related to finitely silting comodules, and give the equivalences among silting comodules, finitely silting comodules, tilting comodules and finitely tilting comodules.
LA - eng
KW - quasi-finite silting comodule; finitely silting comodule; finitely tilting comodule; torsion pair; duality
UR - http://eudml.org/doc/299097
ER -

References

top
  1. Adachi, T., Iyama, O., Reiten, I., 10.1112/S0010437X13007422, Compos. Math. 150 (2014), 415-452. (2014) Zbl1330.16004MR3187626DOI10.1112/S0010437X13007422
  2. Takhman, K. Al, 10.1016/S0022-4049(02)00013-0, J. Pure Appl. Algebra 173 (2002), 245-271. (2002) Zbl1004.16039MR1916479DOI10.1016/S0022-4049(02)00013-0
  3. Anderson, F. W., Fuller, K. R., 10.1007/978-1-4612-4418-9, Graduate Texts in Mathematics 13. Springer, New York (1974). (1974) Zbl0301.16001MR0417223DOI10.1007/978-1-4612-4418-9
  4. Hügel, L. Angeleri, Hrbek, M., 10.1093/imrn/rnw147, Int. Math. Res. Not. 2017 (2017), 4131-4151. (2017) Zbl1405.13018MR3671512DOI10.1093/imrn/rnw147
  5. Hügel, L. Angeleri, Marks, F., Vitória, J., 10.1093/imrn/rnv191, Int. Math. Res. Not. 2016 (2016), 1251-1284. (2016) Zbl1367.16005MR3493448DOI10.1093/imrn/rnv191
  6. Colby, R. R., Fuller, K. R., 10.1017/CBO9780511546518, Cambridge Tracts in Mathematics 161. Cambridge University Press, Cambridge (2004). (2004) Zbl1069.16001MR2048277DOI10.1017/CBO9780511546518
  7. Colpi, R., Trlifaj, J., 10.1006/jabr.1995.1368, J. Algebra 178 (1995), 614-634. (1995) Zbl0849.16033MR1359905DOI10.1006/jabr.1995.1368
  8. Doi, Y., 10.2969/jmsj/03310031, J. Math. Soc. Japan 33 (1981), 31-50. (1981) Zbl0459.16007MR0597479DOI10.2969/jmsj/03310031
  9. Keller, B., Vossieck, D., Aisles in derived categories, Bull. Soc. Math. Belg., Sér. A 40 (1988), 239-253. (1988) Zbl0671.18003MR0976638
  10. Krause, H., Saorín, M., 10.1090/conm/229, Trends in the Representation Theory of Finite Dimensional Algebras Contemporary Mathematics 229. AMS, Providence (1998), 227-236. (1998) Zbl0959.16003MR1676223DOI10.1090/conm/229
  11. Lin, B. I., 10.1016/0021-8693(77)90246-0, J. Algebra 49 (1977), 357-373. (1977) Zbl0369.16010MR0498663DOI10.1016/0021-8693(77)90246-0
  12. Positselski, L., 10.1007/s10468-017-9736-6, Algebr. Represent. Theory 21 (2018), 737-767. (2018) Zbl1394.16040MR3826725DOI10.1007/s10468-017-9736-6
  13. Simsom, D., 10.4064/cm90-1-9, Colloq. Math. 90 (2001), 101-150. (2001) Zbl1055.16038MR1874368DOI10.4064/cm90-1-9
  14. Simson, D., Cotilted coalgebras and tame comodule type, Arab. J. Sci. Eng., Sect. C, Theme Issues 33 (2008), 421-445. (2008) Zbl1186.16039MR2500051
  15. Takeuchi, M., Morita theorems for categories of comodules, J. Fac. Sci., Univ. Tokyo, Sect. I A 24 (1977), 629-644. (1977) Zbl0385.18007MR0472967
  16. Wang, M.-Y., Some co-hom functors and classical tilting comodules, Southeast Asian Bull. Math. 22 (1998), 455-468. (1998) Zbl0942.16047MR1811188
  17. Wang, M., Tilting comodules over semi-perfect coalgebras, Algebra Colloq. 6 (1999), 461-472. (1999) Zbl0945.16034MR1809680
  18. Wang, M., Morita Equivalence and Its Generalizations, Science Press, Beijing (2001). (2001) 
  19. Yuan, Q. Q., Yao, H.-L., 10.6040/j.issn.1671-9352.0.2021.503, J. Shandong. Univ. 57 (2022), 1-7. (2022) DOI10.6040/j.issn.1671-9352.0.2021.503

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.