Investigating generalized quaternions with dual-generalized complex numbers

Nurten Gürses; Gülsüm Yeliz Şentürk; Salim Yüce

Mathematica Bohemica (2023)

  • Volume: 148, Issue: 3, page 329-348
  • ISSN: 0862-7959

Abstract

top
We aim to introduce generalized quaternions with dual-generalized complex number coefficients for all real values α , β and 𝔭 . Furthermore, the algebraic structures, properties and matrix forms are expressed as generalized quaternions and dual-generalized complex numbers. Finally, based on their matrix representations, the multiplication of these quaternions is restated and numerical examples are given.

How to cite

top

Gürses, Nurten, Şentürk, Gülsüm Yeliz, and Yüce, Salim. "Investigating generalized quaternions with dual-generalized complex numbers." Mathematica Bohemica 148.3 (2023): 329-348. <http://eudml.org/doc/299104>.

@article{Gürses2023,
abstract = {We aim to introduce generalized quaternions with dual-generalized complex number coefficients for all real values $\alpha $, $\beta $ and $\mathfrak \{p\}$. Furthermore, the algebraic structures, properties and matrix forms are expressed as generalized quaternions and dual-generalized complex numbers. Finally, based on their matrix representations, the multiplication of these quaternions is restated and numerical examples are given.},
author = {Gürses, Nurten, Şentürk, Gülsüm Yeliz, Yüce, Salim},
journal = {Mathematica Bohemica},
keywords = {generalized quaternion; dual-generalized complex number; matrix representation},
language = {eng},
number = {3},
pages = {329-348},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Investigating generalized quaternions with dual-generalized complex numbers},
url = {http://eudml.org/doc/299104},
volume = {148},
year = {2023},
}

TY - JOUR
AU - Gürses, Nurten
AU - Şentürk, Gülsüm Yeliz
AU - Yüce, Salim
TI - Investigating generalized quaternions with dual-generalized complex numbers
JO - Mathematica Bohemica
PY - 2023
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 148
IS - 3
SP - 329
EP - 348
AB - We aim to introduce generalized quaternions with dual-generalized complex number coefficients for all real values $\alpha $, $\beta $ and $\mathfrak {p}$. Furthermore, the algebraic structures, properties and matrix forms are expressed as generalized quaternions and dual-generalized complex numbers. Finally, based on their matrix representations, the multiplication of these quaternions is restated and numerical examples are given.
LA - eng
KW - generalized quaternion; dual-generalized complex number; matrix representation
UR - http://eudml.org/doc/299104
ER -

References

top
  1. Akar, M., Yüce, S., Şahin, S., 10.20967/jcscm.2018.01.001, J. Computer Sci. Comput. Math. 8 (2018), 1-6. (2018) DOI10.20967/jcscm.2018.01.001
  2. Alfsmann, D., On families of 2 N -dimensional hypercomplex algebras suitable for digital signal processing, 14th European Signal Processing Conference IEEE, Piscataway (2006), 1-4. (2006) 
  3. Aslan, S., Bekar, M., Yaylı, Y., 10.1016/j.geomphys.2020.103876, J. Geom. Phys. 158 (2020), Article ID 103876, 12 pages. (2020) Zbl1444.11022MR4145613DOI10.1016/j.geomphys.2020.103876
  4. Catoni, F., Boccaletti, D., Cannata, R., Catoni, V., Nichelatti, E., Zampetti, P., 10.1007/978-3-7643-8614-6, Frontiers in Mathematics. Birkhäuser, Basel (2008). (2008) Zbl1151.53001MR2411620DOI10.1007/978-3-7643-8614-6
  5. Catoni, F., Cannata, R., Catoni, V., Zampetti, P., 10.1007/s00006-004-0008-2, Adv. Appl. Clifford Algebr. 14 (2004), 47-68. (2004) Zbl1118.30300MR2236099DOI10.1007/s00006-004-0008-2
  6. Catoni, F., Cannata, R., Catoni, V., Zampetti, P., 10.1007/s00006-005-0001-4, Adv. Appl. Clifford Algebr. 15 (2005), 1-25. (2005) Zbl1114.53003MR2236622DOI10.1007/s00006-005-0001-4
  7. Cheng, H. H., Thompson, S., 10.1115/96-DETC/MECH-1221, Design Engineering Technical Conferences and Computers in Engineering. Conference ASME 1996 ASME, Irvine (1996), 19-22. (1996) DOI10.1115/96-DETC/MECH-1221
  8. Cheng, H. H., Thompson, S., 10.1115/1.2829444, J. Mech. Des. 121 (1999), 200-205. (1999) DOI10.1115/1.2829444
  9. Clifford, W. K., Mathematical Papers, Chelsea Publishing, New York (1968). (1968) MR0238662
  10. Cockle, J., 10.1080/14786444908646169, Phil. Mag. (3) 34 (1849), 37-47. (1849) DOI10.1080/14786444908646169
  11. Cockle, J., 10.1080/14786444908646384, Phil. Mag. (3) 35 (1849), 434-437. (1849) DOI10.1080/14786444908646384
  12. Cohen, A., Shoham, M., 10.1016/j.mechmachtheory.2017.12.007, Mech. Mach. Theory 125 (2018), 101-110. (2018) DOI10.1016/j.mechmachtheory.2017.12.007
  13. Dickson, L. E., 10.2307/2370658, Am. J. Math. 46 (1924), 1-16 9999JFM99999 50.0094.02. (1924) MR1506514DOI10.2307/2370658
  14. Fike, J. A., Alonso, J. J., 10.2514/6.2011-886, 49th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition American Institute of Aeronautics and Astronautics, New York (2011), 1-17. (2011) DOI10.2514/6.2011-886
  15. Fike, J. A., Alonso, J. J., 10.1007/978-3-642-30023-3_15, Recent Advances in Algorithmic Differentiation Lecture Notes in Computational Science and Engineering 87. Springer, Berlin (2012), 163-173. (2012) Zbl1251.65026MR3241221DOI10.1007/978-3-642-30023-3_15
  16. Fjelstad, P., 10.1119/1.14605, Am. J. Phys. 54 (1986), 416-422. (1986) MR0839491DOI10.1119/1.14605
  17. Fjelstad, P., Gal, G. S., 10.1007/BF03041925, Adv. Appl. Clifford Algebr. 8 (1998), 47-68. (1998) Zbl0937.30029MR1648833DOI10.1007/BF03041925
  18. Griffiths, L. W., 10.2307/2371761, Am. J. Math. 50 (1928), 303-314 9999JFM99999 54.0164.01. (1928) MR1506671DOI10.2307/2371761
  19. Gürses, N., Şentürk, G. Y., Yüce, S., 10.35378/gujs.653906, Gazi Univ. J. Sci. 34 (2021), 180-194. (2021) DOI10.35378/gujs.653906
  20. Hamilton, W. R., 10.1080/14786444408644923, Phil. Mag. (3) 25 (1844), 10-13. (1844) DOI10.1080/14786444408644923
  21. Hamilton, W. R., Lectures on Quaternions, Hodges and Smith, Dublin (1853). (1853) 
  22. Hamilton, W. R., 10.1017/CBO9780511707162, Chelsea Publishing, New York (1969). (1969) MR0237284DOI10.1017/CBO9780511707162
  23. Harkin, A. A., Harkin, J. B., 10.1080/0025570X.2004.11953236, Math. Mag. 77 (2004), 118-129. (2004) Zbl1176.30070MR1573734DOI10.1080/0025570X.2004.11953236
  24. Jafari, M., Yayli, Y., 10.1501/Commua1_0000000724, Commun. Fac. Sci. Univ. Ank., Ser. A1 64 (2015), 15-27. (2015) MR3453638DOI10.1501/Commua1_0000000724
  25. Kantor, I. L., Solodovnikov, A. S., Hypercomplex Numbers: An Elementary Introduction to Algebras, Springer, New York (1989). (1989) Zbl0669.17001MR0996029
  26. Majern{'ık, V., 10.12693/APhysPolA.90.491, Acta Phys. Polon. A 90 (1996), 491-498. (1996) MR1426884DOI10.12693/APhysPolA.90.491
  27. Mamagani, A. B., Jafari, M., On properties of generalized quaternion algebra, J. Novel Appl. Sci. 2 (2013), 683-689. (2013) 
  28. Messelmi, F., Dual-complex numbers and their holomorphic functions, Available at https://hal.archives-ouvertes.fr/hal-01114178 (2015), 11 pages. (2015) 
  29. Stefanelli, R., 10.1007/s11044-007-9088-9, Multibody Syst. Dyn. 18 (2007), 323-344. (2007) Zbl1128.70002MR2355249DOI10.1007/s11044-007-9088-9
  30. Pottman, H., Wallner, J., 10.1007/978-3-642-04018-4, Mathematics and Visualization. Springer, Berlin (2001). (2001) Zbl1006.51015MR1849803DOI10.1007/978-3-642-04018-4
  31. Price, G. B., 10.1201/9781315137278, Pure and Applied Mathematics 140. Marcel Dekker, New York (1991). (1991) Zbl0729.30040MR1094818DOI10.1201/9781315137278
  32. Rochon, D., Shapiro, M., On algebraic properties of bicomplex and hyperbolic numbers, An. Univ. Oradea, Fasc. Mat. 11 (2004), 71-110. (2004) Zbl1114.11033MR2127591
  33. Savin, D., Flaut, C., Ciobanu, C., Some properties of the symbol algebras, Carpathian J. Math. 25 (2009), 239-245. (2009) Zbl1249.17007MR2731200
  34. Sobczyk, G., 10.1080/07468342.1995.11973712, Coll. Math. J. 26 (1995), 268-280. (1995) DOI10.1080/07468342.1995.11973712
  35. Study, E., Geometrie der Dynamen: Die Zusammensetzung von Kräften und verwandte Gegenstände der Geometrie, B. G. Teubner, Leipzig (1903), German 9999JFM99999 33.0691.01. (1903) 
  36. Toyoshima, H., Computationally efficient bicomplex multipliers for digital signal processing, IEICE Trans. Inform. Syst. E81-D (1998), 236-238. (1998) 
  37. Veldsman, S., 10.2989/16073606.2018.1442884, Quaest. Math. 42 (2019), 181-200. (2019) Zbl1437.16044MR3918887DOI10.2989/16073606.2018.1442884
  38. Yaglom, I. M., Complex Numbers in Geometry, Academic Press, New York (1968). (1968) Zbl0147.20201MR0220134
  39. Yaglom, I. M., 10.1007/978-1-4612-6135-3, Springer, New York (1979). (1979) Zbl0393.51013MR0520230DOI10.1007/978-1-4612-6135-3

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.