Triangulated categories of periodic complexes and orbit categories
Czechoslovak Mathematical Journal (2023)
- Volume: 73, Issue: 3, page 765-792
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topLiu, Jian. "Triangulated categories of periodic complexes and orbit categories." Czechoslovak Mathematical Journal 73.3 (2023): 765-792. <http://eudml.org/doc/299105>.
@article{Liu2023,
abstract = {We investigate the triangulated hull of orbit categories of the perfect derived category and the bounded derived category of a ring concerning the power of the suspension functor. It turns out that the triangulated hull corresponds to the full subcategory of compact objects of certain triangulated categories of periodic complexes. This specializes to Stai and Zhao’s result on the finite dimensional algebra of finite global dimension. As the first application, if $A$, $B$ are flat algebras over a commutative ring and they are derived equivalent, then the corresponding derived categories of $n$-periodic complexes are triangle equivalent. As the second application, we get the periodic version of the Koszul duality.},
author = {Liu, Jian},
journal = {Czechoslovak Mathematical Journal},
keywords = {periodic complex; orbit category; triangulated hull; derived category; derived equivalence; dg category; Koszul duality},
language = {eng},
number = {3},
pages = {765-792},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Triangulated categories of periodic complexes and orbit categories},
url = {http://eudml.org/doc/299105},
volume = {73},
year = {2023},
}
TY - JOUR
AU - Liu, Jian
TI - Triangulated categories of periodic complexes and orbit categories
JO - Czechoslovak Mathematical Journal
PY - 2023
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 73
IS - 3
SP - 765
EP - 792
AB - We investigate the triangulated hull of orbit categories of the perfect derived category and the bounded derived category of a ring concerning the power of the suspension functor. It turns out that the triangulated hull corresponds to the full subcategory of compact objects of certain triangulated categories of periodic complexes. This specializes to Stai and Zhao’s result on the finite dimensional algebra of finite global dimension. As the first application, if $A$, $B$ are flat algebras over a commutative ring and they are derived equivalent, then the corresponding derived categories of $n$-periodic complexes are triangle equivalent. As the second application, we get the periodic version of the Koszul duality.
LA - eng
KW - periodic complex; orbit category; triangulated hull; derived category; derived equivalence; dg category; Koszul duality
UR - http://eudml.org/doc/299105
ER -
References
top- Avramov, L. L., Buchweitz, R.-O., Iyengar, S. B., 10.1007/s00222-007-0041-6, Invent. Math. 169 (2007), 1-35. (2007) Zbl1153.13010MR2308849DOI10.1007/s00222-007-0041-6
- Avramov, L. L., Buchweitz, R.-O., Iyengar, S. B., Miller, C., 10.1016/j.aim.2009.10.009, Adv. Math. 223 (2010), 1731-1781. (2010) Zbl1186.13006MR2592508DOI10.1016/j.aim.2009.10.009
- Beilinson, A. A., Coherent sheaves on and problems of linear algebra, Funkts. Anal. Prilozh. 12 (1978), 68-69 Russian. (1978) Zbl0402.14006MR0509388
- Beilinson, A. A., Bernstein, J., Deligne, P., Faisceaux pervers, Analysis and Topology on Singular Spaces. I Astérisque 100. Société mathématique de France, Paris (1982), 5-171 French. (1982) Zbl0536.14011MR0751966
- Beilinson, A. A., Ginzburg, V., Soergel, W., 10.1090/S0894-0347-96-00192-0, J. Am. Math. Soc. 9 (1996), 473-527. (1996) Zbl0864.17006MR1322847DOI10.1090/S0894-0347-96-00192-0
- Benson, D. J., Iyengar, S. B., Krause, H., 10.4007/annals.2011.174.3.6, Ann. Math. (2) 174 (2011), 1643-1684. (2011) Zbl1261.20057MR2846489DOI10.4007/annals.2011.174.3.6
- Bernstein, I. N., Gel'fand, I. M., Gel'fand, S. I., Algebraic vector bundles on and problems of linear algebra, Funkts. Anal. Prilozh. 12 (1978), 66-67 Russian. (1978) Zbl0402.14005MR0509387
- Bökstedt, M., Neeman, A., Homotopy limits in triangulated categories, Compos. Math. 86 (1993), 209-234. (1993) Zbl0802.18008MR1214458
- Bruns, W., Herzog, J., 10.1017/CBO9780511608681, Cambridge Studies in Advanced Mathematics 39. Cambridge University Press, Cambridge (1998). (1998) Zbl0909.13005MR1251956DOI10.1017/CBO9780511608681
- Buchweitz, R.-O., 10.1090/surv/262, Mathematical Surveys and Monographs 262. AMS, Providence (2021). (2021) Zbl07498869MR4390795DOI10.1090/surv/262
- Cartan, H., Eilenberg, S., Homological Algebra, Princeton Mathematical Series 19. Princeton University Press, Princeton (1956). (1956) Zbl0075.24305MR0077480
- Chen, X.-W., Liu, J., Wang, R., 10.1007/s10468-021-10104-3, (to appear) in Algebr. Represent. Theory. MR4568856DOI10.1007/s10468-021-10104-3
- Drinfeld, V., 10.1016/j.jalgebra.2003.05.001, J. Algebra 272 (2004), 643-691. (2004) Zbl1064.18009MR2028075DOI10.1016/j.jalgebra.2003.05.001
- Eisenbud, D., Fløystad, G., Schreyer, F.-O., 10.1090/S0002-9947-03-03291-4, Trans. Am. Math. Soc. 355 (2003), 4397-4426. (2003) Zbl1063.14021MR1990756DOI10.1090/S0002-9947-03-03291-4
- Enochs, E. E., Jenda, O. M. G., 10.1515/9783110803662, De Gruyter Expositions in Mathematics 30. Walter De Gruyter, Berlin (2000). (2000) Zbl0952.13001MR1753146DOI10.1515/9783110803662
- Happel, D., 10.1007/BF02564452, Comment. Math. Helv. 62 (1987), 339-389. (1987) Zbl0626.16008MR0910167DOI10.1007/BF02564452
- Iyengar, S. B., Krause, H., 10.4171/dm/209, Doc. Math. 11 (2006), 207-240. (2006) Zbl1119.13014MR2262932DOI10.4171/dm/209
- Iyengar, S. B., Letz, J. C., Liu, J., Pollitz, J., 10.2140/pjm.2022.318.275, Pac. J. Math. 318 (2022), 275-293. (2022) Zbl07578612MR4474363DOI10.2140/pjm.2022.318.275
- Kalck, M., Yang, D., 10.1016/j.jpaa.2017.11.011, J. Pure Appl. Algebra 222 (2018), 3005-3035. (2018) Zbl1410.16012MR3795632DOI10.1016/j.jpaa.2017.11.011
- Keller, B., 10.24033/asens.1689, Ann. Sci. Éc. Norm. Supér. (4) 27 (1994), 63-102. (1994) Zbl0799.18007MR1258406DOI10.24033/asens.1689
- Keller, B., 10.1016/S0022-4049(97)00152-7, J. Pure Appl. Algebra 136 (1999), 1-56. (1999) Zbl0923.19004MR1667558DOI10.1016/S0022-4049(97)00152-7
- Keller, B., 10.4171/dm/199, Doc. Math. 10 (2005), 551-581. (2005) Zbl1086.18006MR2184464DOI10.4171/dm/199
- Keller, B., Corrections to `On triangulated orbit categories', Available at (2009), 5 pages. (2009)
- Krause, H., 10.1112/S0010437X05001375, Compos. Math. 141 (2005), 1128-1162. (2005) Zbl1090.18006MR2157133DOI10.1112/S0010437X05001375
- Krause, H., 10.1017/CBO9781139107075.005, Triangulated Categories London Mathematical Society Lecture Note Series 375. Cambridge University Press, Cambridge (2010), 161-235. (2010) Zbl1232.18012MR2681709DOI10.1017/CBO9781139107075.005
- Neeman, A., 10.24033/asens.1659, Ann. Sci. Éc. Norm. Supér. (4) 25 (1992), 547-566. (1992) Zbl0868.19001MR1191736DOI10.24033/asens.1659
- Neeman, A., 10.1090/S0894-0347-96-00174-9, J. Am. Math. Soc. 9 (1996), 205-236. (1996) Zbl0864.14008MR1308405DOI10.1090/S0894-0347-96-00174-9
- Neeman, A., 10.1515/9781400837212, Annals of Mathematics Studies 148. Princeton University Press, Princeton (2001). (2001) Zbl0974.18008MR1812507DOI10.1515/9781400837212
- Orlov, D., 10.1007/978-0-8176-4747-6_16, Algebra, Arithmetic, and Geometry. Volume II Progress in Mathematics 270. Birkhäuser, Boston (2009), 503-531. (2009) Zbl1200.18007MR2641200DOI10.1007/978-0-8176-4747-6_16
- Peng, L., Xiao, J., 10.1006/jabr.1997.7152, J. Algebra 198 (1997), 19-56. (1997) Zbl0893.16007MR1482975DOI10.1006/jabr.1997.7152
- Peng, L., Xiao, J., 10.1007/s002220000062, Invent. Math. 140 (2000), 563-603. (2000) Zbl0966.16006MR1760751DOI10.1007/s002220000062
- Rickard, J., 10.1112/jlms/s2-39.3.436, J. Lond. Math. Soc., II. Ser. 39 (1989), 436-456. (1989) Zbl0642.16034MR1002456DOI10.1112/jlms/s2-39.3.436
- Rickard, J., 10.1112/jlms/s2-43.1.37, J. Lond. Math. Soc., II. Ser. 43 (1991), 37-48. (1991) Zbl0683.16030MR1099084DOI10.1112/jlms/s2-43.1.37
- Ringel, C. M., Zhang, P., 10.1016/j.jalgebra.2016.12.001, J. Algebra 475 (2017), 327-360. (2017) Zbl1406.16010MR3612474DOI10.1016/j.jalgebra.2016.12.001
- Stai, T., 10.4310/MRL.2018.v25.n1.a9, Math. Res. Lett. 25 (2018), 199-236. (2018) Zbl1427.16005MR3818620DOI10.4310/MRL.2018.v25.n1.a9
- Tang, X., Huang, Z., 10.1016/j.jalgebra.2019.12.011, J. Algebra 549 (2020), 128-164. (2020) Zbl1432.18009MR4050670DOI10.1016/j.jalgebra.2019.12.011
- Zhao, X., 10.1007/s11425-014-4852-9, Sci. China, Math. 57 (2014), 2329-2334. (2014) Zbl1304.18029MR3266493DOI10.1007/s11425-014-4852-9
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.