Deriving DG categories
Annales scientifiques de l'École Normale Supérieure (1994)
- Volume: 27, Issue: 1, page 63-102
- ISSN: 0012-9593
Access Full Article
topHow to cite
topKeller, Bernhard. "Deriving DG categories." Annales scientifiques de l'École Normale Supérieure 27.1 (1994): 63-102. <http://eudml.org/doc/82359>.
@article{Keller1994,
author = {Keller, Bernhard},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {triangulated category; Morita theorem; derived category; Koszul duality},
language = {eng},
number = {1},
pages = {63-102},
publisher = {Elsevier},
title = {Deriving DG categories},
url = {http://eudml.org/doc/82359},
volume = {27},
year = {1994},
}
TY - JOUR
AU - Keller, Bernhard
TI - Deriving DG categories
JO - Annales scientifiques de l'École Normale Supérieure
PY - 1994
PB - Elsevier
VL - 27
IS - 1
SP - 63
EP - 102
LA - eng
KW - triangulated category; Morita theorem; derived category; Koszul duality
UR - http://eudml.org/doc/82359
ER -
References
top- [1] A. A. BEILINSON, V. GINSBURG and V. A. SCHECHTMAN, Koszul duality (Journal of Geometry and Physics, Vol. 5, 1988, pp. 317-350). Zbl0695.14009MR91c:18011
- [2] A. A. BEILINSONV. GINSBURG and W. SOERGEL, Koszul Duality Patterns in Representation Theory, preprint, 1991.
- [3] E. H. BROWN, Cohomology Theories (Ann. of Math., Vol. 75, 1962, pp. 467-484). Zbl0101.40603MR25 #1551
- [4] H. CARTAN and S. EILENBERG, Homological Algebra, Princeton University Press, 1956. Zbl0075.24305MR17,1040e
- [5] P. FREYD, Abelian Categories, Harper, 1966. Zbl0121.02103MR35 #231
- [6] P. GABRIEL, Des catégories abéliennes (Bull. Soc. Math. France, Vol. 90, 1962, pp. 323-448). Zbl0201.35602MR38 #1144
- [7] P. GABRIEL and A. V. ROITER, Representations of Finite-dimensional Algebras, Encyclopaedia of Mathematical Sciences, Vol. 73, Springer, 1992. Zbl0839.16001MR94h:16001b
- [8] A. GROTHENDIECK, Éléments de Géométrie algébrique, III, Étude cohomologique des faisceaux cohérents (Publ. Math. IHES, Vol. 11, 1961). Zbl0118.36206
- [9] D. HAPPEL, On the derived Category of a Finite-dimensional Algebra (Comment. Math. Helv., Vol. 62, 1987, pp. 339-389). Zbl0626.16008MR89c:16029
- [10] G. HOCHSCHILD, B. KOSTANT and A. ROSENBERG, Differential Forms on regular affine Algebras (Trans. Amer. Math. Soc., Vol. 102, 1962, pp. 383-408). Zbl0102.27701MR26 #167
- [11] L. ILLUSIE, Complexe cotangent et déformations II (Springer LNM, Vol. 283, 1972). Zbl0238.13017MR58 #10886b
- [12] B. KELLER, Chain Complexes and Stable Categories (Manus. Math., Vol. 67, 1990, pp. 379-417). Zbl0753.18005MR91h:18006
- [13] B. KELLER, A Remark on Tilting Theory and DG algebras (Manus. Math., Vol. 79, 1993, pp. 247-252). Zbl0810.16006MR94d:18016
- [14] B. KELLER and D. VOSSIECK, Sous les catégories dérivées (C. R. Acad. Sci. Paris, Vol. 305, Série I, 1987, pp. 225-228). Zbl0628.18003MR88m:18014
- [15] S. MACLANE, Homology, Springer-Verlag, 1963. Zbl0133.26502MR28 #122
- [16] D. QUILLEN, Higher Algebraic K-theory I (Springer LNM, Vol. 341, 1973, pp. 85-147). Zbl0292.18004MR49 #2895
- [17] A. NEEMAN, The Connection between the K-theory Localization Theorem of Thomason, Trobaugh and Yao and the smashing subcategories of Bousfield and Ravenel, Preprint. Zbl0868.19001
- [18] D. C. RAVENEL, Localization with Respect to Certain Periodic Homology Theories (Amer J. of Math., Vol. 106, 1984, pp. 351-414). Zbl0586.55003MR85k:55009
- [19] J. RICKARD, Morita Theory for Derived Categories (Journal of the London Math. Soc., 39, 1989, 436-456). Zbl0642.16034MR91b:18012
- [20] J. RICKARDDerived Equivalences as Derived Functors (J. London Math. Soc., Vol. 43, 1991, pp. 37-48). Zbl0683.16030MR92b:16043
- [21] G. RINEHART, Differential Forms on General Commutative Algebras (Trans. Amer. Math. Soc., Vol. 108, 1965, pp. 195-222). Zbl0113.26204MR27 #4850
- [22] H. TODA, Composition Methods in Homotopy Groups of Spheres, Princeton University Press, 1962. Zbl0101.40703MR26 #777
- [23] J.-L. VERDIER, Catégories dérivées, état 0, SGA 4 1/2 (Springer LNM, Vol. 569, 1977, pp. 262-311). Zbl0407.18008MR57 #3132
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.