On Popov's explicit formula and the Davenport expansion
Quan Yang; Jay Mehta; Shigeru Kanemitsu
Czechoslovak Mathematical Journal (2023)
- Volume: 73, Issue: 3, page 869-883
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topYang, Quan, Mehta, Jay, and Kanemitsu, Shigeru. "On Popov's explicit formula and the Davenport expansion." Czechoslovak Mathematical Journal 73.3 (2023): 869-883. <http://eudml.org/doc/299107>.
@article{Yang2023,
abstract = {We shall establish an explicit formula for the Davenport series in terms of trivial zeros of the Riemann zeta-function, where by the Davenport series we mean an infinite series involving a PNT (Prime Number Theorem) related to arithmetic function $a_n$ with the periodic Bernoulli polynomial weight $\bar\{B\}_\varkappa (nx)$ and PNT arithmetic functions include the von Mangoldt function, Möbius function and Liouville function, etc. The Riesz sum of order $0$ or $1$ gives the well-known explicit formula for respectively the partial sum or the Riesz sum of order $1$ of PNT functions. Then we may reveal the genesis of the Popov explicit formula as the integrated Davenport series with the Riesz sum of order $1$ subtracted. The Fourier expansion of the Davenport series is proved to be a consequence of the functional equation, which is referred to as the Davenport expansion. By the explicit formula for the Davenport series, we also prove that the Davenport expansion for the von Mangoldt function is equivalent to the Kummer’s Fourier series up to a formula of Ramanujan and a fortiori is equivalent to the functional equation for the Riemann zeta-function.},
author = {Yang, Quan, Mehta, Jay, Kanemitsu, Shigeru},
journal = {Czechoslovak Mathematical Journal},
keywords = {explicit formula; Davenport expansion; Kummer's Fourier series; Riemann zeta-function; functional equation},
language = {eng},
number = {3},
pages = {869-883},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On Popov's explicit formula and the Davenport expansion},
url = {http://eudml.org/doc/299107},
volume = {73},
year = {2023},
}
TY - JOUR
AU - Yang, Quan
AU - Mehta, Jay
AU - Kanemitsu, Shigeru
TI - On Popov's explicit formula and the Davenport expansion
JO - Czechoslovak Mathematical Journal
PY - 2023
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 73
IS - 3
SP - 869
EP - 883
AB - We shall establish an explicit formula for the Davenport series in terms of trivial zeros of the Riemann zeta-function, where by the Davenport series we mean an infinite series involving a PNT (Prime Number Theorem) related to arithmetic function $a_n$ with the periodic Bernoulli polynomial weight $\bar{B}_\varkappa (nx)$ and PNT arithmetic functions include the von Mangoldt function, Möbius function and Liouville function, etc. The Riesz sum of order $0$ or $1$ gives the well-known explicit formula for respectively the partial sum or the Riesz sum of order $1$ of PNT functions. Then we may reveal the genesis of the Popov explicit formula as the integrated Davenport series with the Riesz sum of order $1$ subtracted. The Fourier expansion of the Davenport series is proved to be a consequence of the functional equation, which is referred to as the Davenport expansion. By the explicit formula for the Davenport series, we also prove that the Davenport expansion for the von Mangoldt function is equivalent to the Kummer’s Fourier series up to a formula of Ramanujan and a fortiori is equivalent to the functional equation for the Riemann zeta-function.
LA - eng
KW - explicit formula; Davenport expansion; Kummer's Fourier series; Riemann zeta-function; functional equation
UR - http://eudml.org/doc/299107
ER -
References
top- Barner, K., 10.1515/crll.1981.323.139, J. Reine Angew. Math. 323 (1981), 139-152. (1981) Zbl0446.12013MR0611448DOI10.1515/crll.1981.323.139
- Chakraborty, K., Kanemitsu, S., Tsukada, H., 10.2206/kyushujm.66.411, Kyushu J. Math. 66 (2012), 411-427. (2012) Zbl1334.11072MR3051345DOI10.2206/kyushujm.66.411
- Chowla, S., On some infinite series involving arithmetical functions, Proc. Indian Acad. Sci. Sect. A 5 (1937), 511-513. (1937) Zbl0017.00505MR1829818
- Davenport, H., 10.1093/qmath/os-8.1.8, Q. J. Math., Oxf. Ser. 8 (1937), 8-13. (1937) Zbl0016.20105DOI10.1093/qmath/os-8.1.8
- Davenport, H., 10.1093/qmath/os-8.1.313, Q. J. Math., Oxf. Ser. 8 (1937), 313-320. (1937) Zbl0017.39101DOI10.1093/qmath/os-8.1.313
- Davenport, H., 10.1007/978-1-4757-5927-3, Graduate Texts in Mathematics 74. Springer, New York (1980). (1980) Zbl0453.10002MR0606931DOI10.1007/978-1-4757-5927-3
- Fawaz, A. Z., 10.1112/plms/s3-1.1.86, Proc. Lond. Math. Soc., III. Ser. 1 (1951), 86-103. (1951) Zbl0042.27302MR0043841DOI10.1112/plms/s3-1.1.86
- Hamburger, H., 10.1007/BF01449611, Math. Ann. 85 (1922), 129-140 German 9999JFM99999 48.1214.01. (1922) MR1512054DOI10.1007/BF01449611
- Hardy, G. H., Littlewood, J. E., 10.1112/plms/s2-20.1.15, Proc. Lond. Math. Soc. (2) 20 (1921), 15-36 9999JFM99999 48.0197.07. (1921) MR1577360DOI10.1112/plms/s2-20.1.15
- Hartman, P., Wintner, A., On certain Fourier series involving sums of divisors, Trav. Inst. Math. Tbilissi 3 (1938), 113-118. (1938) Zbl0018.35401
- Hecke, E., 10.1007/BF02940580, Abh. Math. Semin. Univ. Hamb. 1 (1921), 54-76 German 9999JFM99999 48.0197.03 9999DOI99999 10.1007/BF02940580 . (1921) MR3069388DOI10.1007/BF02940580
- Ingham, A. E., The Distribution of Prime Numbers, Cambridge Tracts in Mathematics and Mathematical Physics 30. Cambridge University Press, Cambridge (1932). (1932) Zbl0715.11045MR1074573
- Jaffard, S., On Davenport expansions, Fractal Geometry and Applications Proceedings of Symposia in Pure Mathematics 72. AMS, Providence (2004), 273-303. (2004) Zbl1123.28002MR2112109
- Kanemitsu, S., Ma, J., Tanigawa, Y., 10.1002/mana.200710212, Math. Nachr. 284 (2011), 287-297. (2011) Zbl1226.11092MR2790889DOI10.1002/mana.200710212
- Kanemitsu, S., Tsukada, H., Contributions to the Theory of Zeta-Functions: The Modular Relation Supremacy, Series on Number Theory and Its Applications 10. World Scientific, Hackensack (2015),9999DOI99999 10.1142/8711 . (2015) Zbl1311.11003MR3329611
- Koksma, J. F., Diophantische Approximationen, Springer, Berlin (1974), German 9999MR99999 0344200 . (1974) Zbl0276.10015MR0344200
- Li, H., Ma, J., Zhang, W., 10.1007/s10114-010-8387-x, Acta Math. Sin., Engl. Ser. 26 (2010), 1125-1132. (2010) Zbl1221.11060MR2644050DOI10.1007/s10114-010-8387-x
- Mikolás, M., Mellinsche Transformation und Orthogonalität bei . Verallgemeinerung der Riemannschen Funktionalgleichung von , Acta Sci. Math. 17 (1956), 143-164 German 9999MR99999 0089864 . (1956) Zbl0073.06403MR0089864
- Patkowski, A. E., On Popov's formula involving the von Mangoldt function, Pi Mu Epsilon J. 15 (2019), 45-47. (2019) Zbl1441.11206MR4263971
- Patkowski, A. E., 10.21136/CMJ.2021.0311-20, Czech. Math. J. 71 (2021), 1149-1155. (2021) Zbl07442480MR4339117DOI10.21136/CMJ.2021.0311-20
- Patkowski, A. E., On Davenport expansions, Popov's formula, and Fine's query, Available at https://arxiv.org/abs/2004.05644v3 (2021), 8 pages. (2021) MR4330286
- Patkowski, A. E., 10.21099/tkbjm/20224601145, Tsukuba J. Math. 46 (2022), 145-152. (2022) Zbl07598531MR4489190DOI10.21099/tkbjm/20224601145
- Popov, A. I., Several series containing primes and roots of , C. R. (Dokl.) Acad. Sci. URSS, n. Ser. 41 (1943), 362-363. (1943) Zbl0061.08203MR0010581
- Prachar, K., Primzahlverteilung, Die Grundlehren der Mathematischen Wissenschaften 91. Springer, Berlin (1957), German. (1957) Zbl0080.25901MR0516660
- Romanov, N. P., Hilbert spaces and the theory of numbers. II, Izv. Akad. Nauk SSSR, Ser. Mat. 15 (1951), 131-152 Russian. (1951) Zbl0044.04002MR0043122
- Segal, S. L., 10.4064/aa-28-4-345-348, Acta Arith. 28 (1976), 345-348. (1976) Zbl0319.10050MR0387222DOI10.4064/aa-28-4-345-348
- Srivastava, H. M., Choi, J., 10.1007/978-94-015-9672-5, Kluwer Academic, Dordrecht (2001). (2001) Zbl1014.33001MR1849375DOI10.1007/978-94-015-9672-5
- Titchmarsh, E. C., 10.1093/qmath/os-14.1.16, Q. J. Math., Oxf. Ser. 14 (1943), 16-26. (1943) Zbl0061.08302MR0008228DOI10.1093/qmath/os-14.1.16
- Titchmarsh, E. C., The Theory of the Riemann Zeta-Function, Oxford University Press, Oxford (1951). (1951) Zbl0042.07901MR0046485
- Walfisz, A. A., On the sums of the coefficients of certain Dirichlet series, Soobshch. Akad. Nauk Gruz. SSR 26 (1961), 9-16 Russian. (1961) Zbl0136.33204MR0142514
- Walum, H., 10.2140/pjm.1991.149.383, Pac. J. Math. 149 (1991), 383-396. (1991) Zbl0736.11012MR1105705DOI10.2140/pjm.1991.149.383
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.