On Popov's explicit formula and the Davenport expansion

Quan Yang; Jay Mehta; Shigeru Kanemitsu

Czechoslovak Mathematical Journal (2023)

  • Volume: 73, Issue: 3, page 869-883
  • ISSN: 0011-4642

Abstract

top
We shall establish an explicit formula for the Davenport series in terms of trivial zeros of the Riemann zeta-function, where by the Davenport series we mean an infinite series involving a PNT (Prime Number Theorem) related to arithmetic function a n with the periodic Bernoulli polynomial weight B ¯ ϰ ( n x ) and PNT arithmetic functions include the von Mangoldt function, Möbius function and Liouville function, etc. The Riesz sum of order 0 or 1 gives the well-known explicit formula for respectively the partial sum or the Riesz sum of order 1 of PNT functions. Then we may reveal the genesis of the Popov explicit formula as the integrated Davenport series with the Riesz sum of order 1 subtracted. The Fourier expansion of the Davenport series is proved to be a consequence of the functional equation, which is referred to as the Davenport expansion. By the explicit formula for the Davenport series, we also prove that the Davenport expansion for the von Mangoldt function is equivalent to the Kummer’s Fourier series up to a formula of Ramanujan and a fortiori is equivalent to the functional equation for the Riemann zeta-function.

How to cite

top

Yang, Quan, Mehta, Jay, and Kanemitsu, Shigeru. "On Popov's explicit formula and the Davenport expansion." Czechoslovak Mathematical Journal 73.3 (2023): 869-883. <http://eudml.org/doc/299107>.

@article{Yang2023,
abstract = {We shall establish an explicit formula for the Davenport series in terms of trivial zeros of the Riemann zeta-function, where by the Davenport series we mean an infinite series involving a PNT (Prime Number Theorem) related to arithmetic function $a_n$ with the periodic Bernoulli polynomial weight $\bar\{B\}_\varkappa (nx)$ and PNT arithmetic functions include the von Mangoldt function, Möbius function and Liouville function, etc. The Riesz sum of order $0$ or $1$ gives the well-known explicit formula for respectively the partial sum or the Riesz sum of order $1$ of PNT functions. Then we may reveal the genesis of the Popov explicit formula as the integrated Davenport series with the Riesz sum of order $1$ subtracted. The Fourier expansion of the Davenport series is proved to be a consequence of the functional equation, which is referred to as the Davenport expansion. By the explicit formula for the Davenport series, we also prove that the Davenport expansion for the von Mangoldt function is equivalent to the Kummer’s Fourier series up to a formula of Ramanujan and a fortiori is equivalent to the functional equation for the Riemann zeta-function.},
author = {Yang, Quan, Mehta, Jay, Kanemitsu, Shigeru},
journal = {Czechoslovak Mathematical Journal},
keywords = {explicit formula; Davenport expansion; Kummer's Fourier series; Riemann zeta-function; functional equation},
language = {eng},
number = {3},
pages = {869-883},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On Popov's explicit formula and the Davenport expansion},
url = {http://eudml.org/doc/299107},
volume = {73},
year = {2023},
}

TY - JOUR
AU - Yang, Quan
AU - Mehta, Jay
AU - Kanemitsu, Shigeru
TI - On Popov's explicit formula and the Davenport expansion
JO - Czechoslovak Mathematical Journal
PY - 2023
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 73
IS - 3
SP - 869
EP - 883
AB - We shall establish an explicit formula for the Davenport series in terms of trivial zeros of the Riemann zeta-function, where by the Davenport series we mean an infinite series involving a PNT (Prime Number Theorem) related to arithmetic function $a_n$ with the periodic Bernoulli polynomial weight $\bar{B}_\varkappa (nx)$ and PNT arithmetic functions include the von Mangoldt function, Möbius function and Liouville function, etc. The Riesz sum of order $0$ or $1$ gives the well-known explicit formula for respectively the partial sum or the Riesz sum of order $1$ of PNT functions. Then we may reveal the genesis of the Popov explicit formula as the integrated Davenport series with the Riesz sum of order $1$ subtracted. The Fourier expansion of the Davenport series is proved to be a consequence of the functional equation, which is referred to as the Davenport expansion. By the explicit formula for the Davenport series, we also prove that the Davenport expansion for the von Mangoldt function is equivalent to the Kummer’s Fourier series up to a formula of Ramanujan and a fortiori is equivalent to the functional equation for the Riemann zeta-function.
LA - eng
KW - explicit formula; Davenport expansion; Kummer's Fourier series; Riemann zeta-function; functional equation
UR - http://eudml.org/doc/299107
ER -

References

top
  1. Barner, K., 10.1515/crll.1981.323.139, J. Reine Angew. Math. 323 (1981), 139-152. (1981) Zbl0446.12013MR0611448DOI10.1515/crll.1981.323.139
  2. Chakraborty, K., Kanemitsu, S., Tsukada, H., 10.2206/kyushujm.66.411, Kyushu J. Math. 66 (2012), 411-427. (2012) Zbl1334.11072MR3051345DOI10.2206/kyushujm.66.411
  3. Chowla, S., On some infinite series involving arithmetical functions, Proc. Indian Acad. Sci. Sect. A 5 (1937), 511-513. (1937) Zbl0017.00505MR1829818
  4. Davenport, H., 10.1093/qmath/os-8.1.8, Q. J. Math., Oxf. Ser. 8 (1937), 8-13. (1937) Zbl0016.20105DOI10.1093/qmath/os-8.1.8
  5. Davenport, H., 10.1093/qmath/os-8.1.313, Q. J. Math., Oxf. Ser. 8 (1937), 313-320. (1937) Zbl0017.39101DOI10.1093/qmath/os-8.1.313
  6. Davenport, H., 10.1007/978-1-4757-5927-3, Graduate Texts in Mathematics 74. Springer, New York (1980). (1980) Zbl0453.10002MR0606931DOI10.1007/978-1-4757-5927-3
  7. Fawaz, A. Z., 10.1112/plms/s3-1.1.86, Proc. Lond. Math. Soc., III. Ser. 1 (1951), 86-103. (1951) Zbl0042.27302MR0043841DOI10.1112/plms/s3-1.1.86
  8. Hamburger, H., 10.1007/BF01449611, Math. Ann. 85 (1922), 129-140 German 9999JFM99999 48.1214.01. (1922) MR1512054DOI10.1007/BF01449611
  9. Hardy, G. H., Littlewood, J. E., 10.1112/plms/s2-20.1.15, Proc. Lond. Math. Soc. (2) 20 (1921), 15-36 9999JFM99999 48.0197.07. (1921) MR1577360DOI10.1112/plms/s2-20.1.15
  10. Hartman, P., Wintner, A., On certain Fourier series involving sums of divisors, Trav. Inst. Math. Tbilissi 3 (1938), 113-118. (1938) Zbl0018.35401
  11. Hecke, E., 10.1007/BF02940580, Abh. Math. Semin. Univ. Hamb. 1 (1921), 54-76 German 9999JFM99999 48.0197.03 9999DOI99999 10.1007/BF02940580 . (1921) MR3069388DOI10.1007/BF02940580
  12. Ingham, A. E., The Distribution of Prime Numbers, Cambridge Tracts in Mathematics and Mathematical Physics 30. Cambridge University Press, Cambridge (1932). (1932) Zbl0715.11045MR1074573
  13. Jaffard, S., On Davenport expansions, Fractal Geometry and Applications Proceedings of Symposia in Pure Mathematics 72. AMS, Providence (2004), 273-303. (2004) Zbl1123.28002MR2112109
  14. Kanemitsu, S., Ma, J., Tanigawa, Y., 10.1002/mana.200710212, Math. Nachr. 284 (2011), 287-297. (2011) Zbl1226.11092MR2790889DOI10.1002/mana.200710212
  15. Kanemitsu, S., Tsukada, H., Contributions to the Theory of Zeta-Functions: The Modular Relation Supremacy, Series on Number Theory and Its Applications 10. World Scientific, Hackensack (2015),9999DOI99999 10.1142/8711 . (2015) Zbl1311.11003MR3329611
  16. Koksma, J. F., Diophantische Approximationen, Springer, Berlin (1974), German 9999MR99999 0344200 . (1974) Zbl0276.10015MR0344200
  17. Li, H., Ma, J., Zhang, W., 10.1007/s10114-010-8387-x, Acta Math. Sin., Engl. Ser. 26 (2010), 1125-1132. (2010) Zbl1221.11060MR2644050DOI10.1007/s10114-010-8387-x
  18. Mikolás, M., Mellinsche Transformation und Orthogonalität bei ζ ( s , u ) . Verallgemeinerung der Riemannschen Funktionalgleichung von ζ ( s ) , Acta Sci. Math. 17 (1956), 143-164 German 9999MR99999 0089864 . (1956) Zbl0073.06403MR0089864
  19. Patkowski, A. E., On Popov's formula involving the von Mangoldt function, Pi Mu Epsilon J. 15 (2019), 45-47. (2019) Zbl1441.11206MR4263971
  20. Patkowski, A. E., 10.21136/CMJ.2021.0311-20, Czech. Math. J. 71 (2021), 1149-1155. (2021) Zbl07442480MR4339117DOI10.21136/CMJ.2021.0311-20
  21. Patkowski, A. E., On Davenport expansions, Popov's formula, and Fine's query, Available at https://arxiv.org/abs/2004.05644v3 (2021), 8 pages. (2021) MR4330286
  22. Patkowski, A. E., 10.21099/tkbjm/20224601145, Tsukuba J. Math. 46 (2022), 145-152. (2022) Zbl07598531MR4489190DOI10.21099/tkbjm/20224601145
  23. Popov, A. I., Several series containing primes and roots of ζ ( s ) , C. R. (Dokl.) Acad. Sci. URSS, n. Ser. 41 (1943), 362-363. (1943) Zbl0061.08203MR0010581
  24. Prachar, K., Primzahlverteilung, Die Grundlehren der Mathematischen Wissenschaften 91. Springer, Berlin (1957), German. (1957) Zbl0080.25901MR0516660
  25. Romanov, N. P., Hilbert spaces and the theory of numbers. II, Izv. Akad. Nauk SSSR, Ser. Mat. 15 (1951), 131-152 Russian. (1951) Zbl0044.04002MR0043122
  26. Segal, S. L., 10.4064/aa-28-4-345-348, Acta Arith. 28 (1976), 345-348. (1976) Zbl0319.10050MR0387222DOI10.4064/aa-28-4-345-348
  27. Srivastava, H. M., Choi, J., 10.1007/978-94-015-9672-5, Kluwer Academic, Dordrecht (2001). (2001) Zbl1014.33001MR1849375DOI10.1007/978-94-015-9672-5
  28. Titchmarsh, E. C., 10.1093/qmath/os-14.1.16, Q. J. Math., Oxf. Ser. 14 (1943), 16-26. (1943) Zbl0061.08302MR0008228DOI10.1093/qmath/os-14.1.16
  29. Titchmarsh, E. C., The Theory of the Riemann Zeta-Function, Oxford University Press, Oxford (1951). (1951) Zbl0042.07901MR0046485
  30. Walfisz, A. A., On the sums of the coefficients of certain Dirichlet series, Soobshch. Akad. Nauk Gruz. SSR 26 (1961), 9-16 Russian. (1961) Zbl0136.33204MR0142514
  31. Walum, H., 10.2140/pjm.1991.149.383, Pac. J. Math. 149 (1991), 383-396. (1991) Zbl0736.11012MR1105705DOI10.2140/pjm.1991.149.383

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.