A new approach to antisymmetric infinitesimal bialgebras

Tianshui Ma; Bei Li; Jie Li; Miaoshuang Chen

Czechoslovak Mathematical Journal (2023)

  • Volume: 73, Issue: 3, page 755-764
  • ISSN: 0011-4642

Abstract

top
We present a notion of an anti-covariant bialgebra extending the anti-symmetric infinitesimal bialgebra and also provide some equivalent characterizations of it. We also prove that an anti-associative Yang-Baxter pair can produce a special Rota-Baxter system.

How to cite

top

Ma, Tianshui, et al. "A new approach to antisymmetric infinitesimal bialgebras." Czechoslovak Mathematical Journal 73.3 (2023): 755-764. <http://eudml.org/doc/299109>.

@article{Ma2023,
abstract = {We present a notion of an anti-covariant bialgebra extending the anti-symmetric infinitesimal bialgebra and also provide some equivalent characterizations of it. We also prove that an anti-associative Yang-Baxter pair can produce a special Rota-Baxter system.},
author = {Ma, Tianshui, Li, Bei, Li, Jie, Chen, Miaoshuang},
journal = {Czechoslovak Mathematical Journal},
keywords = {infinitesimal bialgebra; quasitriangular infinitesimal bialgebra},
language = {eng},
number = {3},
pages = {755-764},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {A new approach to antisymmetric infinitesimal bialgebras},
url = {http://eudml.org/doc/299109},
volume = {73},
year = {2023},
}

TY - JOUR
AU - Ma, Tianshui
AU - Li, Bei
AU - Li, Jie
AU - Chen, Miaoshuang
TI - A new approach to antisymmetric infinitesimal bialgebras
JO - Czechoslovak Mathematical Journal
PY - 2023
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 73
IS - 3
SP - 755
EP - 764
AB - We present a notion of an anti-covariant bialgebra extending the anti-symmetric infinitesimal bialgebra and also provide some equivalent characterizations of it. We also prove that an anti-associative Yang-Baxter pair can produce a special Rota-Baxter system.
LA - eng
KW - infinitesimal bialgebra; quasitriangular infinitesimal bialgebra
UR - http://eudml.org/doc/299109
ER -

References

top
  1. Aguiar, M., 10.1090/conm/267, New Trends in Hopf Algebra Theory Contemporary Mathematics 267. AMS, Providence (2000), 1-29. (2000) Zbl0982.16028MR1800704DOI10.1090/conm/267
  2. Aguiar, M., 10.1006/jabr.2001.8877, J. Algebra 244 (2001), 492-532. (2001) Zbl0991.16033MR1859038DOI10.1006/jabr.2001.8877
  3. Bai, C., 10.4171/JNCG/64, J. Noncommut. Geom. 4 (2010), 475-530. (2010) Zbl1250.17028MR2718800DOI10.4171/JNCG/64
  4. Bai, C., Guo, L., Ma, T., Bialgebras, Frobenius algebras and associative Yang-Baxter equations for Rota-Baxter algebras, Available at https://arxiv.org/abs/2112.10928 (2021), 27 pages. (2021) MR4534711
  5. Brzeziński, T., 10.1016/j.jalgebra.2016.04.018, J. Algebra 460 (2016), 1-25. (2016) Zbl1376.16039MR3510392DOI10.1016/j.jalgebra.2016.04.018
  6. Drinfel'd, V. G., Hamiltonian structures on Lie groups, Lie bialgebras and geometric meaning of the classical Yang-Baxter equations, Sov. Math., Dokl. 27 (1983), 67-71 translation from Dokl. Akad. Nauk SSSR 268 1983 285-287. (1983) Zbl0526.58017MR0688240
  7. Gao, X., Wang, X., 10.1007/s10801-018-0830-6, J. Algebr. Comb. 49 (2019), 437-460. (2019) Zbl1437.16030MR3954430DOI10.1007/s10801-018-0830-6
  8. Joni, S. A., Rota, G.-C., 10.1002/sapm197961293, Stud. Appl. Math. 61 (1979), 93-139. (1979) Zbl0471.05020MR0544721DOI10.1002/sapm197961293
  9. Liu, L., Makhlouf, A., Menini, C., Panaite, F., 10.1016/j.jalgebra.2020.06.012, J. Algebra 560 (2020), 1146-1172. (2020) Zbl07239031MR4117866DOI10.1016/j.jalgebra.2020.06.012
  10. Loday, J.-L., Ronco, M., 10.1515/CRELLE.2006.025, J. Reine Angew. Math. 592 (2006), 123-155. (2006) Zbl1096.16019MR2222732DOI10.1515/CRELLE.2006.025
  11. Ma, T., Li, J., Nonhomogeneous associative Yang-Baxter equations, Bull. Math. Soc. Sci. Math. Roum., Nouv. Sér. 65 (2022), 97-118. (2022) MR4408202
  12. Ma, T., Li, J., Yang, T., 10.1080/00927872.2021.1871913, Commun. Algebra 49 (2021), 2423-2443. (2021) Zbl1476.17017MR4255016DOI10.1080/00927872.2021.1871913
  13. Ma, T., Makhlouf, A., Silvestrov, S., 10.1142/S021949882150064X, J. Algebra Appl. 20 (2021), Article ID 2150064, 28 pages. (2021) Zbl1476.16030MR4251744DOI10.1142/S021949882150064X
  14. Ma, T., Yang, H., 10.1007/s00006-020-01071-x, Adv. Appl. Clifford Algebr. 30 (2020), Article ID 42, 22 pages. (2020) Zbl1473.17056MR4118445DOI10.1007/s00006-020-01071-x
  15. Ma, T., Yang, H., Zhang, L., Zheng, H., 10.4064/cm7993-9-2019, Colloq. Math. 161 (2020), 189-221. (2020) Zbl1465.16033MR4097065DOI10.4064/cm7993-9-2019
  16. Wang, S., Wang, S., 10.1080/00927872.2013.766796, Commun. Algebra 42 (2014), 2195-2212. (2014) Zbl1301.16035MR3169699DOI10.1080/00927872.2013.766796
  17. Yau, D., Infinitesimal Hom-bialgebras and Hom-Lie bialgebras, Available at https://arxiv.org/abs/1001.5000 (2010), 35 pages. (2010) MR2660540
  18. Zhang, Y., Chen, D., Gao, X., Luo, Y.-F., 10.2140/pjm.2019.302.741, Pac. J. Math. 302 (2019), 741-766. (2019) Zbl1435.16005MR4036749DOI10.2140/pjm.2019.302.741
  19. Zhang, Y., Gao, X., Weighted infinitesimal bialgebras, Available at https://arxiv.org/abs/1810.10790v3 (2022), 44 pages. (2022) 
  20. Zhang, Y., Gao, X., Luo, Y., 10.1007/s10801-020-00942-7, J. Algebr. Comb. 53 (2021), 771-803. (2021) Zbl1476.16041MR4258069DOI10.1007/s10801-020-00942-7
  21. Zhelyabin, V. N., 10.1007/BF02671949, Algebra Logic 36 (1997), 1-15. (1997) Zbl0935.17014MR1454688DOI10.1007/BF02671949

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.