A new approach to antisymmetric infinitesimal bialgebras
Tianshui Ma; Bei Li; Jie Li; Miaoshuang Chen
Czechoslovak Mathematical Journal (2023)
- Volume: 73, Issue: 3, page 755-764
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topMa, Tianshui, et al. "A new approach to antisymmetric infinitesimal bialgebras." Czechoslovak Mathematical Journal 73.3 (2023): 755-764. <http://eudml.org/doc/299109>.
@article{Ma2023,
abstract = {We present a notion of an anti-covariant bialgebra extending the anti-symmetric infinitesimal bialgebra and also provide some equivalent characterizations of it. We also prove that an anti-associative Yang-Baxter pair can produce a special Rota-Baxter system.},
author = {Ma, Tianshui, Li, Bei, Li, Jie, Chen, Miaoshuang},
journal = {Czechoslovak Mathematical Journal},
keywords = {infinitesimal bialgebra; quasitriangular infinitesimal bialgebra},
language = {eng},
number = {3},
pages = {755-764},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {A new approach to antisymmetric infinitesimal bialgebras},
url = {http://eudml.org/doc/299109},
volume = {73},
year = {2023},
}
TY - JOUR
AU - Ma, Tianshui
AU - Li, Bei
AU - Li, Jie
AU - Chen, Miaoshuang
TI - A new approach to antisymmetric infinitesimal bialgebras
JO - Czechoslovak Mathematical Journal
PY - 2023
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 73
IS - 3
SP - 755
EP - 764
AB - We present a notion of an anti-covariant bialgebra extending the anti-symmetric infinitesimal bialgebra and also provide some equivalent characterizations of it. We also prove that an anti-associative Yang-Baxter pair can produce a special Rota-Baxter system.
LA - eng
KW - infinitesimal bialgebra; quasitriangular infinitesimal bialgebra
UR - http://eudml.org/doc/299109
ER -
References
top- Aguiar, M., 10.1090/conm/267, New Trends in Hopf Algebra Theory Contemporary Mathematics 267. AMS, Providence (2000), 1-29. (2000) Zbl0982.16028MR1800704DOI10.1090/conm/267
- Aguiar, M., 10.1006/jabr.2001.8877, J. Algebra 244 (2001), 492-532. (2001) Zbl0991.16033MR1859038DOI10.1006/jabr.2001.8877
- Bai, C., 10.4171/JNCG/64, J. Noncommut. Geom. 4 (2010), 475-530. (2010) Zbl1250.17028MR2718800DOI10.4171/JNCG/64
- Bai, C., Guo, L., Ma, T., Bialgebras, Frobenius algebras and associative Yang-Baxter equations for Rota-Baxter algebras, Available at https://arxiv.org/abs/2112.10928 (2021), 27 pages. (2021) MR4534711
- Brzeziński, T., 10.1016/j.jalgebra.2016.04.018, J. Algebra 460 (2016), 1-25. (2016) Zbl1376.16039MR3510392DOI10.1016/j.jalgebra.2016.04.018
- Drinfel'd, V. G., Hamiltonian structures on Lie groups, Lie bialgebras and geometric meaning of the classical Yang-Baxter equations, Sov. Math., Dokl. 27 (1983), 67-71 translation from Dokl. Akad. Nauk SSSR 268 1983 285-287. (1983) Zbl0526.58017MR0688240
- Gao, X., Wang, X., 10.1007/s10801-018-0830-6, J. Algebr. Comb. 49 (2019), 437-460. (2019) Zbl1437.16030MR3954430DOI10.1007/s10801-018-0830-6
- Joni, S. A., Rota, G.-C., 10.1002/sapm197961293, Stud. Appl. Math. 61 (1979), 93-139. (1979) Zbl0471.05020MR0544721DOI10.1002/sapm197961293
- Liu, L., Makhlouf, A., Menini, C., Panaite, F., 10.1016/j.jalgebra.2020.06.012, J. Algebra 560 (2020), 1146-1172. (2020) Zbl07239031MR4117866DOI10.1016/j.jalgebra.2020.06.012
- Loday, J.-L., Ronco, M., 10.1515/CRELLE.2006.025, J. Reine Angew. Math. 592 (2006), 123-155. (2006) Zbl1096.16019MR2222732DOI10.1515/CRELLE.2006.025
- Ma, T., Li, J., Nonhomogeneous associative Yang-Baxter equations, Bull. Math. Soc. Sci. Math. Roum., Nouv. Sér. 65 (2022), 97-118. (2022) MR4408202
- Ma, T., Li, J., Yang, T., 10.1080/00927872.2021.1871913, Commun. Algebra 49 (2021), 2423-2443. (2021) Zbl1476.17017MR4255016DOI10.1080/00927872.2021.1871913
- Ma, T., Makhlouf, A., Silvestrov, S., 10.1142/S021949882150064X, J. Algebra Appl. 20 (2021), Article ID 2150064, 28 pages. (2021) Zbl1476.16030MR4251744DOI10.1142/S021949882150064X
- Ma, T., Yang, H., 10.1007/s00006-020-01071-x, Adv. Appl. Clifford Algebr. 30 (2020), Article ID 42, 22 pages. (2020) Zbl1473.17056MR4118445DOI10.1007/s00006-020-01071-x
- Ma, T., Yang, H., Zhang, L., Zheng, H., 10.4064/cm7993-9-2019, Colloq. Math. 161 (2020), 189-221. (2020) Zbl1465.16033MR4097065DOI10.4064/cm7993-9-2019
- Wang, S., Wang, S., 10.1080/00927872.2013.766796, Commun. Algebra 42 (2014), 2195-2212. (2014) Zbl1301.16035MR3169699DOI10.1080/00927872.2013.766796
- Yau, D., Infinitesimal Hom-bialgebras and Hom-Lie bialgebras, Available at https://arxiv.org/abs/1001.5000 (2010), 35 pages. (2010) MR2660540
- Zhang, Y., Chen, D., Gao, X., Luo, Y.-F., 10.2140/pjm.2019.302.741, Pac. J. Math. 302 (2019), 741-766. (2019) Zbl1435.16005MR4036749DOI10.2140/pjm.2019.302.741
- Zhang, Y., Gao, X., Weighted infinitesimal bialgebras, Available at https://arxiv.org/abs/1810.10790v3 (2022), 44 pages. (2022)
- Zhang, Y., Gao, X., Luo, Y., 10.1007/s10801-020-00942-7, J. Algebr. Comb. 53 (2021), 771-803. (2021) Zbl1476.16041MR4258069DOI10.1007/s10801-020-00942-7
- Zhelyabin, V. N., 10.1007/BF02671949, Algebra Logic 36 (1997), 1-15. (1997) Zbl0935.17014MR1454688DOI10.1007/BF02671949
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.