Page 1

Displaying 1 – 7 of 7

Showing per page

Classifying bicrossed products of two Sweedler's Hopf algebras

Costel-Gabriel Bontea (2014)

Czechoslovak Mathematical Journal

We continue the study started recently by Agore, Bontea and Militaru in “Classifying bicrossed products of Hopf algebras” (2014), by describing and classifying all Hopf algebras E that factorize through two Sweedler’s Hopf algebras. Equivalently, we classify all bicrossed products H 4 H 4 . There are three steps in our approach. First, we explicitly describe the set of all matched pairs ( H 4 , H 4 , , ) by proving that, with the exception of the trivial pair, this set is parameterized by the ground field k . Then, for...

From left modules to algebras over an operad: application to combinatorial Hopf algebras

Muriel Livernet (2010)

Annales mathématiques Blaise Pascal

The purpose of this paper is two fold: we study the behaviour of the forgetful functor from 𝕊 -modules to graded vector spaces in the context of algebras over an operad and derive the construction of combinatorial Hopf algebras. As a byproduct we obtain freeness and cofreeness results for those Hopf algebras.Let 𝒪 denote the forgetful functor from 𝕊 -modules to graded vector spaces. Left modules over an operad 𝒫 are treated as 𝒫 -algebras in the category of 𝕊 -modules. We generalize the results obtained...

On the quantum groups and semigroups of maps between noncommutative spaces

Maysam Maysami Sadr (2017)

Czechoslovak Mathematical Journal

We define algebraic families of (all) morphisms which are purely algebraic analogs of quantum families of (all) maps introduced by P. M. Sołtan. Also, algebraic families of (all) isomorphisms are introduced. By using these notions we construct two classes of Hopf-algebras which may be interpreted as the quantum group of all maps from a finite space to a quantum group, and the quantum group of all automorphisms of a finite noncommutative (NC) space. As special cases three classes of NC objects are...

Quiver bialgebras and monoidal categories

Hua-Lin Huang, Blas Torrecillas (2013)

Colloquium Mathematicae

We study bialgebra structures on quiver coalgebras and monoidal structures on the categories of locally nilpotent and locally finite quiver representations. It is shown that the path coalgebra of an arbitrary quiver admits natural bialgebra structures. This endows the category of locally nilpotent and locally finite representations of an arbitrary quiver with natural monoidal structures from bialgebras. We also obtain theorems of Gabriel type for pointed bialgebras and hereditary finite pointed...

Shuffle bialgebras

María Ronco (2011)

Annales de l’institut Fourier

The goal of our work is to study the spaces of primitive elements of some combinatorial Hopf algebras, whose underlying vector spaces admit linear basis labelled by subsets of the set of maps between finite sets. In order to deal with these objects we introduce the notion of shuffle algebras, which are coloured algebras where composition is not always defined. We define bialgebras in this framework and compute the subpaces of primitive elements associated to them. These spaces of primitive elements...

Currently displaying 1 – 7 of 7

Page 1