Boundedness criteria for a class of second order nonlinear differential equations with delay

Daniel O. Adams; Mathew Omonigho Omeike; Idowu A. Osinuga; Biodun S. Badmus

Mathematica Bohemica (2023)

  • Volume: 148, Issue: 3, page 303-327
  • ISSN: 0862-7959

Abstract

top
We consider certain class of second order nonlinear nonautonomous delay differential equations of the form a ( t ) x ' ' + b ( t ) g ( x , x ' ) + c ( t ) h ( x ( t - r ) ) m ( x ' ) = p ( t , x , x ' ) and ( a ( t ) x ' ) ' + b ( t ) g ( x , x ' ) + c ( t ) h ( x ( t - r ) ) m ( x ' ) = p ( t , x , x ' ) , where a , b , c , g , h , m and p are real valued functions which depend at most on the arguments displayed explicitly and r is a positive constant. Different forms of the integral inequality method were used to investigate the boundedness of all solutions and their derivatives. Here, we do not require construction of the Lyapunov-Krasovski functional to establish our results. This work extends and improve on some results in the literature.

How to cite

top

Adams, Daniel O., et al. "Boundedness criteria for a class of second order nonlinear differential equations with delay." Mathematica Bohemica 148.3 (2023): 303-327. <http://eudml.org/doc/299116>.

@article{Adams2023,
abstract = {We consider certain class of second order nonlinear nonautonomous delay differential equations of the form \[ a(t)x^\{\prime \prime \} + b(t)g(x,x^\prime ) + c(t)h(x(t-r))m(x^\prime ) = p(t,x,x^\prime ) \] and \[ (a(t)x^\prime )^\prime + b(t)g(x,x^\prime ) + c(t)h(x(t-r))m(x^\prime ) = p(t,x,x^\prime ), \] where $a$, $b$, $c$, $g$, $h$, $m$ and $p$ are real valued functions which depend at most on the arguments displayed explicitly and $r$ is a positive constant. Different forms of the integral inequality method were used to investigate the boundedness of all solutions and their derivatives. Here, we do not require construction of the Lyapunov-Krasovski functional to establish our results. This work extends and improve on some results in the literature.},
author = {Adams, Daniel O., Omeike, Mathew Omonigho, Osinuga, Idowu A., Badmus, Biodun S.},
journal = {Mathematica Bohemica},
keywords = {boundedness; nonlinear; differential equation of third order; integral inequality},
language = {eng},
number = {3},
pages = {303-327},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Boundedness criteria for a class of second order nonlinear differential equations with delay},
url = {http://eudml.org/doc/299116},
volume = {148},
year = {2023},
}

TY - JOUR
AU - Adams, Daniel O.
AU - Omeike, Mathew Omonigho
AU - Osinuga, Idowu A.
AU - Badmus, Biodun S.
TI - Boundedness criteria for a class of second order nonlinear differential equations with delay
JO - Mathematica Bohemica
PY - 2023
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 148
IS - 3
SP - 303
EP - 327
AB - We consider certain class of second order nonlinear nonautonomous delay differential equations of the form \[ a(t)x^{\prime \prime } + b(t)g(x,x^\prime ) + c(t)h(x(t-r))m(x^\prime ) = p(t,x,x^\prime ) \] and \[ (a(t)x^\prime )^\prime + b(t)g(x,x^\prime ) + c(t)h(x(t-r))m(x^\prime ) = p(t,x,x^\prime ), \] where $a$, $b$, $c$, $g$, $h$, $m$ and $p$ are real valued functions which depend at most on the arguments displayed explicitly and $r$ is a positive constant. Different forms of the integral inequality method were used to investigate the boundedness of all solutions and their derivatives. Here, we do not require construction of the Lyapunov-Krasovski functional to establish our results. This work extends and improve on some results in the literature.
LA - eng
KW - boundedness; nonlinear; differential equation of third order; integral inequality
UR - http://eudml.org/doc/299116
ER -

References

top
  1. Adams, D. O., Olutimo, A. L., Some results on the boundedness of solutions of a certain third order non-autonomous differential equations with delay, Adv. Stud. Contemp. Math., Kyungshang 29 (2019), 237-249. (2019) Zbl1438.34234
  2. Ademola, A. T., Moyo, S., Ogundare, B. S., Ogundiran, M. O., Adesina, O. A., New conditions on the solutions of a certain third order delay differential equations with multiple deviating arguments, Differ. Uravn. Protsessy Upr. 2019 (2019), 33-69. (2019) Zbl1414.34053MR3935484
  3. Afuwape, A. U., Omeike, M. O., 10.1016/j.amc.2007.11.037, Appl. Math. Comput. 200 (2008), 444-451. (2008) Zbl1316.34070MR2421659DOI10.1016/j.amc.2007.11.037
  4. Antosiewicz, H. A., 10.1112/jlms/s1-30.1.64, J. Lond. Math. Soc. 30 (1955), 64-67. (1955) Zbl0064.08404MR0065752DOI10.1112/jlms/s1-30.1.64
  5. Athanassov, Z. S., 10.1016/0022-247X(87)90324-6, J. Math. Anal. Appl. 123 (1987), 461-479. (1987) Zbl0642.34031MR0883702DOI10.1016/0022-247X(87)90324-6
  6. Bellman, R., Cooke, K. L., Differential-Difference Equations, Mathematics in Science and Engineering 6. Academic Press, New York (1963). (1963) Zbl0105.06402MR0147745
  7. Bihari, I., 10.1007/BF02020315, Acta Math. Acad. Sci. Hung. 8 (1957), 261-278. (1957) Zbl0097.29301MR0094516DOI10.1007/BF02020315
  8. Burton, T. A., 10.1137/0303018, J. SIAM Control, Ser. A 3 (1965), 223-230. (1965) Zbl0135.30201MR0190462DOI10.1137/0303018
  9. Burton, T. A., 10.1016/s0076-5392(09)x6019-4, Mathematics in Science and Engineering 178. Academic Press, Orlando (1985). (1985) Zbl0635.34001MR0837654DOI10.1016/s0076-5392(09)x6019-4
  10. Burton, T. A., Grimmer, R. C., 10.1007/BF01303441, Monastsh. Math. 74 (1970), 211-222. (1970) Zbl0195.09804MR0262613DOI10.1007/BF01303441
  11. Burton, T. A., Hatvani, L., 10.2748/tmj/1178227868, Tohoku Math. J., II. Ser. 41 (1989), 65-104. (1989) Zbl0677.34060MR0985304DOI10.2748/tmj/1178227868
  12. Burton, T. A., Hering, R. H., 10.1216/rmjm/1181072449, Rocky Mt. J. Math. 24 (1994), 3-17. (1994) Zbl0806.34067MR1270024DOI10.1216/rmjm/1181072449
  13. Burton, T. A., Makay, G., 10.1007/BF01875152, Acta Math. Hung. 65 (1994), 243-251. (1994) Zbl0805.34068MR1281434DOI10.1007/BF01875152
  14. Driver, R. D., 10.1007/978-1-4684-9467-9, Applied Mathematical Sciences 20. Springer, New York (1977). (1977) Zbl0374.34001MR0477368DOI10.1007/978-1-4684-9467-9
  15. Dvořáková, S., The Qualitative and Numerical Analysis of Nonlinear Delay Differential Equations: Doctoral Thesis, Brno University of Technology, Brno (2011). (2011) 
  16. Èl’sgol’ts, L. È., Introduction to the Theory of Differential Equations with Deviating Arguments, McLaughin Holden-Day, San Francisco (1966). (1966) Zbl0133.33502MR0192154
  17. Èl'sgol'ts, L. È., Norkin, S. B., 10.1016/s0076-5392(08)x6170-3, Mathematics in Science and Engineering 105. Academic Press, New York (1973). (1973) Zbl0287.34073MR0352647DOI10.1016/s0076-5392(08)x6170-3
  18. Gabsi, H., Ardjouni, A., Djoudi, A., New technique in asymptotic stability for third-order nonlinear delay differential equations, Math. Eng. Sci. Aerospace 9 (2018), 315-330. (2018) MR4088058
  19. Gopalsamy, K., 10.1007/978-94-015-7920-9, Mathematics and its Applications 74. Kluwer Academic, Dordrecht (1992). (1992) Zbl0752.34039MR1163190DOI10.1007/978-94-015-7920-9
  20. Graef, J. R., Spikes, P. W., 10.1016/0022-0396(75)90056-X, J. Differ. Equations 17 (1975), 461-476. (1975) Zbl0298.34028MR0361275DOI10.1016/0022-0396(75)90056-X
  21. Graef, J. R., Spikes, P. W., 10.21136/CMJ.1995.128549, Czech. Math. J. 45 (1995), 663-683. (1995) Zbl0851.34050MR1354925DOI10.21136/CMJ.1995.128549
  22. Hale, J. K., 10.1007/978-1-4612-9892-2, Applied Mathematical Sciences 3. Springer, New York (1977). (1977) Zbl0352.34001MR0508721DOI10.1007/978-1-4612-9892-2
  23. Hildebrandt, T. H., Introduction to the Theory of Integration, Pure and Applied Mathematics 13. Academic Press, New York (1963). (1963) Zbl0112.28302MR0154957
  24. Jones, G. S., 10.1137/0112004, J. Soc. Ind. Appl. Math. 12 (1964), 43-57. (1964) Zbl0154.05702MR0162069DOI10.1137/0112004
  25. Kolmanovskii, V., Myshkis, A., 10.1007/978-94-017-1965-0, Mathematics and its Applications 463. Klumer Academic, Dordrecht (1999). (1999) Zbl0917.34001MR1680144DOI10.1007/978-94-017-1965-0
  26. Kolmanovskii, V. B., Nosov, V. R., Stability of Functional Differential Equations, Mathematics in Science and Engineering 180. Academic Press, London (1986). (1986) Zbl0593.34070MR0860947
  27. Krasovskii, N. N., Stability of Motion: Applications of Lyapunov's Second Method to Differential Systems and Equations with Delay, Stanford University Press, Stanford (1963). (1963) Zbl0109.06001MR0147744
  28. Lalli, B. S., 10.1016/0022-247X(69)90221-2, J. Math. Anal. Appl. 25 (1969), 182-188. (1969) MR0239184DOI10.1016/0022-247X(69)90221-2
  29. Legatos, G. G., Contribution to the qualitative theory of ordinary differential equations, Bull. Soc. Math. Grèce, N. Ser. 2 (1961), 1-44 Greek. (1961) Zbl0107.29202MR0140770
  30. Mahmoud, A. M., Tunç, C., 10.18514/MMN.2019.2800, Miskolc Math. Notes 20 (2019), 381-393. (2019) Zbl1438.34255MR3986654DOI10.18514/MMN.2019.2800
  31. V., J. E. Nápoles, A note on the qualitative behaviour of some second order nonlinear differential equations, Divulg. Mat. 10 (2002), 91-99. (2002) Zbl1039.34030MR1946903
  32. Ogundare, B. S., Ademola, A. T., Ogundiran, M. O., Adesina, O. A., 10.1007/s11565-016-0262-y, Ann. Univ. Ferrara, Sez. VII, Sci. Mat. 63 (2017), 333-351. (2017) Zbl1387.34096MR3712445DOI10.1007/s11565-016-0262-y
  33. Olehnik, S. N., The boundedness of solutions of a second-order differential equation, Differ. Equations 9 (1973), 1530-1534. (1973) Zbl0313.34031MR0333345
  34. Olutimo, A. L., Adams, D. O., 10.4236/am.2016.76041, Appl. Math. 7 (2016), 457-467. (2016) DOI10.4236/am.2016.76041
  35. Omeike, M. O., New results on the stability of solution of some non-autonomous delay differential equations of the third order, Differ. Uravn. Protsessy Upr. 2010 (2010), 18-29. (2010) Zbl1476.34152MR2766411
  36. Omeike, M. O., Adeyanju, A. A., Adams, D. O., Stability and boundedness of solutions of certain vector delay differential equations, J. Niger. Math. Soc. 37 (2018), 77-87. (2018) Zbl1474.34504MR3853844
  37. Opial, Z., 10.4064/ap-8-1-65-69, Ann. Pol. Math. 8 (1960), 71-74 French. (1960) Zbl0089.07002MR0113009DOI10.4064/ap-8-1-65-69
  38. Peng, Q., 10.1023/A:1016373806172, Appl. Math. Mech., Engl. Ed. 22 (2001), 842-845. (2001) Zbl0988.34060MR1853095DOI10.1023/A:1016373806172
  39. Rao, M. Rama Mohana, Ordinary Differential Equations: Theory and Applications, Affiliated East-West Press, New Delhi (1980). (1980) Zbl0482.34001MR0587850
  40. Remili, M., Beldjerd, D., A boundedness and stability results for a kind of third order delay differential equations, Appl. Appl. Math. 10 (2015), 772-782. (2015) Zbl1331.34135MR3447611
  41. Remili, M., Beldjerd, D., 10.1016/j.jaubas.2016.05.002, J. Assoc. Arab Universit. Basic Appl. Sci. 23 (2017), 90-95. (2017) MR3752693DOI10.1016/j.jaubas.2016.05.002
  42. Tejumola, H. O., Boundedness criteria for solutions of some second-order differential equations, Atti Accad. Naz. Lincei, VIII. Ser., Rend., Cl. Sci. Fis. Mat. Nat. 50 (1971), 432-437. (1971) Zbl0235.34081MR0306619
  43. Tunç, C., On the stability of solutions for non-autonomous delay differential equations of third-order, Iran. J. Sci. Technol., Trans. A, Sci. 32 (2008), 261-273. (2008) Zbl1364.34107MR2683011
  44. Tunç, C., 10.2298/FIL1003001T, Filomat 24 (2010), 1-10. (2010) Zbl1299.34244MR2791725DOI10.2298/FIL1003001T
  45. Tunç, C., On the qualitative behaviours of solutions to a kind of nonlinear third order differential equations with retarded argument, Ital. J. Pure Appl. Math. 28 (2011), 273-284. (2011) Zbl1248.34109MR2922501
  46. Tunç, C., Stability and boundedness of solutions of non-autonomous differential equations of second order, J. Comput. Anal. Appl. 13 (2011), 1067-1074. (2011) Zbl1227.34054MR2789545
  47. Tunç, C., 10.1007/s11071-012-0704-8, Nonlinear Dyn. 73 (2013), 1245-1251. (2013) Zbl1281.34102MR3083777DOI10.1007/s11071-012-0704-8
  48. Tunç, C., 10.1007/s13370-012-126-2, Afrika Math. 25 (2014), 417-425. (2014) Zbl1306.34113MR3207028DOI10.1007/s13370-012-126-2
  49. Tunç, C., Global stability and boundedness of solutions to differential equations of third order with multiple delays, Dyn. Syst. Appl. 24 (2015), 467-478. (2015) Zbl1335.34117MR3445827
  50. Tunç, C., 10.4067/S0716-09172016000300008, Proyecciones 35 (2016), 317-338. (2016) Zbl1384.34082MR3552443DOI10.4067/S0716-09172016000300008
  51. Tunç, C., On the properties of solutions for a system of nonlinear differential equations of second order, Int. J. Math. Comput. Sci. 14 (2019), 519-534. (2019) Zbl1417.34122MR3923306
  52. Tunç, C., Erdur, S., 10.1155/2018/3151742, Discrete Dyn. Nat. Soc. 2018 (2018), Article ID 3151742, 13 pages. (2018) Zbl1417.34166MR3866998DOI10.1155/2018/3151742
  53. Tunç, C., Tunç, O., 10.1016/j.jare.2015.04.005, J. Adv. Research 7 (2016), 165-168. (2016) DOI10.1016/j.jare.2015.04.005
  54. Tunç, C., Tunç, O., 10.1016/j.jaubas.2016.12.004, J. Assoc. Arab Universit. Basic Appl. Sci. 24 (2017), 169-175. (2017) DOI10.1016/j.jaubas.2016.12.004
  55. Tunç, C., Tunç, O., 10.1080/16583655.2019.1595359, J. Taibah Univ. Sci. 13 (2019), 468-477. (2019) DOI10.1080/16583655.2019.1595359
  56. Willett, D. W., Wong, J. S. W., 10.1137/0114087, SIAM J. Appl. Math. 14 (1966), 1084-1098. (1966) Zbl0173.34703MR0208091DOI10.1137/0114087
  57. Willett, D. W., Wong, J. S. W., 10.1016/0022-247X(68)90112-1, J. Math. Anal. Appl. 23 (1968), 15-24. (1968) Zbl0165.40803MR0226117DOI10.1016/0022-247X(68)90112-1
  58. Wong, J. S. W., 10.1137/0114017, SIAM J. Appl. Math. 14 (1966), 209-214. (1966) Zbl0143.31803MR0203167DOI10.1137/0114017
  59. Wong, J. S. W., Burton, T. A., 10.1007/BF01297623, Monatsh. Math. 69 (1965), 368-374. (1965) Zbl0142.06402MR0186885DOI10.1007/BF01297623
  60. Yao, H., Wang, J., Globally asymptotic stability of a kind of third-order delay differential system, Int. J. Nonlinear Sci. 10 (2010), 82-87. (2010) Zbl1235.34198MR2721073
  61. Yoshizawa, T., Stability Theory by Lyapunov's Second Method, Publications of the Mathematical Society of Japan 9. Mathematical Society of Japan, Tokyo (1966). (1966) Zbl0144.10802MR0208086
  62. Zarghamee, M. S., Mehri, B., 10.1016/0022-247X(70)90003-X, J. Math. Anal. Appl. 31 (1970), 504-508. (1970) Zbl0229.34031MR0265686DOI10.1016/0022-247X(70)90003-X
  63. Zhang, B., 10.1090/S0002-9939-1992-1094508-1, Proc. Am. Math. Soc. 115 (1992), 779-785. (1992) Zbl0756.34075MR1094508DOI10.1090/S0002-9939-1992-1094508-1
  64. Zhang, B., 10.1006/jmaa.1996.0216, J. Math. Anal. Appl. 200 (1996), 453-473. (1996) Zbl0855.34090MR1391161DOI10.1006/jmaa.1996.0216

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.