Boundedness criteria for a class of second order nonlinear differential equations with delay
Daniel O. Adams; Mathew Omonigho Omeike; Idowu A. Osinuga; Biodun S. Badmus
Mathematica Bohemica (2023)
- Volume: 148, Issue: 3, page 303-327
- ISSN: 0862-7959
Access Full Article
topAbstract
topHow to cite
topAdams, Daniel O., et al. "Boundedness criteria for a class of second order nonlinear differential equations with delay." Mathematica Bohemica 148.3 (2023): 303-327. <http://eudml.org/doc/299116>.
@article{Adams2023,
abstract = {We consider certain class of second order nonlinear nonautonomous delay differential equations of the form \[ a(t)x^\{\prime \prime \} + b(t)g(x,x^\prime ) + c(t)h(x(t-r))m(x^\prime ) = p(t,x,x^\prime ) \]
and \[ (a(t)x^\prime )^\prime + b(t)g(x,x^\prime ) + c(t)h(x(t-r))m(x^\prime ) = p(t,x,x^\prime ), \]
where $a$, $b$, $c$, $g$, $h$, $m$ and $p$ are real valued functions which depend at most on the arguments displayed explicitly and $r$ is a positive constant. Different forms of the integral inequality method were used to investigate the boundedness of all solutions and their derivatives. Here, we do not require construction of the Lyapunov-Krasovski functional to establish our results. This work extends and improve on some results in the literature.},
author = {Adams, Daniel O., Omeike, Mathew Omonigho, Osinuga, Idowu A., Badmus, Biodun S.},
journal = {Mathematica Bohemica},
keywords = {boundedness; nonlinear; differential equation of third order; integral inequality},
language = {eng},
number = {3},
pages = {303-327},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Boundedness criteria for a class of second order nonlinear differential equations with delay},
url = {http://eudml.org/doc/299116},
volume = {148},
year = {2023},
}
TY - JOUR
AU - Adams, Daniel O.
AU - Omeike, Mathew Omonigho
AU - Osinuga, Idowu A.
AU - Badmus, Biodun S.
TI - Boundedness criteria for a class of second order nonlinear differential equations with delay
JO - Mathematica Bohemica
PY - 2023
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 148
IS - 3
SP - 303
EP - 327
AB - We consider certain class of second order nonlinear nonautonomous delay differential equations of the form \[ a(t)x^{\prime \prime } + b(t)g(x,x^\prime ) + c(t)h(x(t-r))m(x^\prime ) = p(t,x,x^\prime ) \]
and \[ (a(t)x^\prime )^\prime + b(t)g(x,x^\prime ) + c(t)h(x(t-r))m(x^\prime ) = p(t,x,x^\prime ), \]
where $a$, $b$, $c$, $g$, $h$, $m$ and $p$ are real valued functions which depend at most on the arguments displayed explicitly and $r$ is a positive constant. Different forms of the integral inequality method were used to investigate the boundedness of all solutions and their derivatives. Here, we do not require construction of the Lyapunov-Krasovski functional to establish our results. This work extends and improve on some results in the literature.
LA - eng
KW - boundedness; nonlinear; differential equation of third order; integral inequality
UR - http://eudml.org/doc/299116
ER -
References
top- Adams, D. O., Olutimo, A. L., Some results on the boundedness of solutions of a certain third order non-autonomous differential equations with delay, Adv. Stud. Contemp. Math., Kyungshang 29 (2019), 237-249. (2019) Zbl1438.34234
- Ademola, A. T., Moyo, S., Ogundare, B. S., Ogundiran, M. O., Adesina, O. A., New conditions on the solutions of a certain third order delay differential equations with multiple deviating arguments, Differ. Uravn. Protsessy Upr. 2019 (2019), 33-69. (2019) Zbl1414.34053MR3935484
- Afuwape, A. U., Omeike, M. O., 10.1016/j.amc.2007.11.037, Appl. Math. Comput. 200 (2008), 444-451. (2008) Zbl1316.34070MR2421659DOI10.1016/j.amc.2007.11.037
- Antosiewicz, H. A., 10.1112/jlms/s1-30.1.64, J. Lond. Math. Soc. 30 (1955), 64-67. (1955) Zbl0064.08404MR0065752DOI10.1112/jlms/s1-30.1.64
- Athanassov, Z. S., 10.1016/0022-247X(87)90324-6, J. Math. Anal. Appl. 123 (1987), 461-479. (1987) Zbl0642.34031MR0883702DOI10.1016/0022-247X(87)90324-6
- Bellman, R., Cooke, K. L., Differential-Difference Equations, Mathematics in Science and Engineering 6. Academic Press, New York (1963). (1963) Zbl0105.06402MR0147745
- Bihari, I., 10.1007/BF02020315, Acta Math. Acad. Sci. Hung. 8 (1957), 261-278. (1957) Zbl0097.29301MR0094516DOI10.1007/BF02020315
- Burton, T. A., 10.1137/0303018, J. SIAM Control, Ser. A 3 (1965), 223-230. (1965) Zbl0135.30201MR0190462DOI10.1137/0303018
- Burton, T. A., 10.1016/s0076-5392(09)x6019-4, Mathematics in Science and Engineering 178. Academic Press, Orlando (1985). (1985) Zbl0635.34001MR0837654DOI10.1016/s0076-5392(09)x6019-4
- Burton, T. A., Grimmer, R. C., 10.1007/BF01303441, Monastsh. Math. 74 (1970), 211-222. (1970) Zbl0195.09804MR0262613DOI10.1007/BF01303441
- Burton, T. A., Hatvani, L., 10.2748/tmj/1178227868, Tohoku Math. J., II. Ser. 41 (1989), 65-104. (1989) Zbl0677.34060MR0985304DOI10.2748/tmj/1178227868
- Burton, T. A., Hering, R. H., 10.1216/rmjm/1181072449, Rocky Mt. J. Math. 24 (1994), 3-17. (1994) Zbl0806.34067MR1270024DOI10.1216/rmjm/1181072449
- Burton, T. A., Makay, G., 10.1007/BF01875152, Acta Math. Hung. 65 (1994), 243-251. (1994) Zbl0805.34068MR1281434DOI10.1007/BF01875152
- Driver, R. D., 10.1007/978-1-4684-9467-9, Applied Mathematical Sciences 20. Springer, New York (1977). (1977) Zbl0374.34001MR0477368DOI10.1007/978-1-4684-9467-9
- Dvořáková, S., The Qualitative and Numerical Analysis of Nonlinear Delay Differential Equations: Doctoral Thesis, Brno University of Technology, Brno (2011). (2011)
- Èl’sgol’ts, L. È., Introduction to the Theory of Differential Equations with Deviating Arguments, McLaughin Holden-Day, San Francisco (1966). (1966) Zbl0133.33502MR0192154
- Èl'sgol'ts, L. È., Norkin, S. B., 10.1016/s0076-5392(08)x6170-3, Mathematics in Science and Engineering 105. Academic Press, New York (1973). (1973) Zbl0287.34073MR0352647DOI10.1016/s0076-5392(08)x6170-3
- Gabsi, H., Ardjouni, A., Djoudi, A., New technique in asymptotic stability for third-order nonlinear delay differential equations, Math. Eng. Sci. Aerospace 9 (2018), 315-330. (2018) MR4088058
- Gopalsamy, K., 10.1007/978-94-015-7920-9, Mathematics and its Applications 74. Kluwer Academic, Dordrecht (1992). (1992) Zbl0752.34039MR1163190DOI10.1007/978-94-015-7920-9
- Graef, J. R., Spikes, P. W., 10.1016/0022-0396(75)90056-X, J. Differ. Equations 17 (1975), 461-476. (1975) Zbl0298.34028MR0361275DOI10.1016/0022-0396(75)90056-X
- Graef, J. R., Spikes, P. W., 10.21136/CMJ.1995.128549, Czech. Math. J. 45 (1995), 663-683. (1995) Zbl0851.34050MR1354925DOI10.21136/CMJ.1995.128549
- Hale, J. K., 10.1007/978-1-4612-9892-2, Applied Mathematical Sciences 3. Springer, New York (1977). (1977) Zbl0352.34001MR0508721DOI10.1007/978-1-4612-9892-2
- Hildebrandt, T. H., Introduction to the Theory of Integration, Pure and Applied Mathematics 13. Academic Press, New York (1963). (1963) Zbl0112.28302MR0154957
- Jones, G. S., 10.1137/0112004, J. Soc. Ind. Appl. Math. 12 (1964), 43-57. (1964) Zbl0154.05702MR0162069DOI10.1137/0112004
- Kolmanovskii, V., Myshkis, A., 10.1007/978-94-017-1965-0, Mathematics and its Applications 463. Klumer Academic, Dordrecht (1999). (1999) Zbl0917.34001MR1680144DOI10.1007/978-94-017-1965-0
- Kolmanovskii, V. B., Nosov, V. R., Stability of Functional Differential Equations, Mathematics in Science and Engineering 180. Academic Press, London (1986). (1986) Zbl0593.34070MR0860947
- Krasovskii, N. N., Stability of Motion: Applications of Lyapunov's Second Method to Differential Systems and Equations with Delay, Stanford University Press, Stanford (1963). (1963) Zbl0109.06001MR0147744
- Lalli, B. S., 10.1016/0022-247X(69)90221-2, J. Math. Anal. Appl. 25 (1969), 182-188. (1969) MR0239184DOI10.1016/0022-247X(69)90221-2
- Legatos, G. G., Contribution to the qualitative theory of ordinary differential equations, Bull. Soc. Math. Grèce, N. Ser. 2 (1961), 1-44 Greek. (1961) Zbl0107.29202MR0140770
- Mahmoud, A. M., Tunç, C., 10.18514/MMN.2019.2800, Miskolc Math. Notes 20 (2019), 381-393. (2019) Zbl1438.34255MR3986654DOI10.18514/MMN.2019.2800
- V., J. E. Nápoles, A note on the qualitative behaviour of some second order nonlinear differential equations, Divulg. Mat. 10 (2002), 91-99. (2002) Zbl1039.34030MR1946903
- Ogundare, B. S., Ademola, A. T., Ogundiran, M. O., Adesina, O. A., 10.1007/s11565-016-0262-y, Ann. Univ. Ferrara, Sez. VII, Sci. Mat. 63 (2017), 333-351. (2017) Zbl1387.34096MR3712445DOI10.1007/s11565-016-0262-y
- Olehnik, S. N., The boundedness of solutions of a second-order differential equation, Differ. Equations 9 (1973), 1530-1534. (1973) Zbl0313.34031MR0333345
- Olutimo, A. L., Adams, D. O., 10.4236/am.2016.76041, Appl. Math. 7 (2016), 457-467. (2016) DOI10.4236/am.2016.76041
- Omeike, M. O., New results on the stability of solution of some non-autonomous delay differential equations of the third order, Differ. Uravn. Protsessy Upr. 2010 (2010), 18-29. (2010) Zbl1476.34152MR2766411
- Omeike, M. O., Adeyanju, A. A., Adams, D. O., Stability and boundedness of solutions of certain vector delay differential equations, J. Niger. Math. Soc. 37 (2018), 77-87. (2018) Zbl1474.34504MR3853844
- Opial, Z., 10.4064/ap-8-1-65-69, Ann. Pol. Math. 8 (1960), 71-74 French. (1960) Zbl0089.07002MR0113009DOI10.4064/ap-8-1-65-69
- Peng, Q., 10.1023/A:1016373806172, Appl. Math. Mech., Engl. Ed. 22 (2001), 842-845. (2001) Zbl0988.34060MR1853095DOI10.1023/A:1016373806172
- Rao, M. Rama Mohana, Ordinary Differential Equations: Theory and Applications, Affiliated East-West Press, New Delhi (1980). (1980) Zbl0482.34001MR0587850
- Remili, M., Beldjerd, D., A boundedness and stability results for a kind of third order delay differential equations, Appl. Appl. Math. 10 (2015), 772-782. (2015) Zbl1331.34135MR3447611
- Remili, M., Beldjerd, D., 10.1016/j.jaubas.2016.05.002, J. Assoc. Arab Universit. Basic Appl. Sci. 23 (2017), 90-95. (2017) MR3752693DOI10.1016/j.jaubas.2016.05.002
- Tejumola, H. O., Boundedness criteria for solutions of some second-order differential equations, Atti Accad. Naz. Lincei, VIII. Ser., Rend., Cl. Sci. Fis. Mat. Nat. 50 (1971), 432-437. (1971) Zbl0235.34081MR0306619
- Tunç, C., On the stability of solutions for non-autonomous delay differential equations of third-order, Iran. J. Sci. Technol., Trans. A, Sci. 32 (2008), 261-273. (2008) Zbl1364.34107MR2683011
- Tunç, C., 10.2298/FIL1003001T, Filomat 24 (2010), 1-10. (2010) Zbl1299.34244MR2791725DOI10.2298/FIL1003001T
- Tunç, C., On the qualitative behaviours of solutions to a kind of nonlinear third order differential equations with retarded argument, Ital. J. Pure Appl. Math. 28 (2011), 273-284. (2011) Zbl1248.34109MR2922501
- Tunç, C., Stability and boundedness of solutions of non-autonomous differential equations of second order, J. Comput. Anal. Appl. 13 (2011), 1067-1074. (2011) Zbl1227.34054MR2789545
- Tunç, C., 10.1007/s11071-012-0704-8, Nonlinear Dyn. 73 (2013), 1245-1251. (2013) Zbl1281.34102MR3083777DOI10.1007/s11071-012-0704-8
- Tunç, C., 10.1007/s13370-012-126-2, Afrika Math. 25 (2014), 417-425. (2014) Zbl1306.34113MR3207028DOI10.1007/s13370-012-126-2
- Tunç, C., Global stability and boundedness of solutions to differential equations of third order with multiple delays, Dyn. Syst. Appl. 24 (2015), 467-478. (2015) Zbl1335.34117MR3445827
- Tunç, C., 10.4067/S0716-09172016000300008, Proyecciones 35 (2016), 317-338. (2016) Zbl1384.34082MR3552443DOI10.4067/S0716-09172016000300008
- Tunç, C., On the properties of solutions for a system of nonlinear differential equations of second order, Int. J. Math. Comput. Sci. 14 (2019), 519-534. (2019) Zbl1417.34122MR3923306
- Tunç, C., Erdur, S., 10.1155/2018/3151742, Discrete Dyn. Nat. Soc. 2018 (2018), Article ID 3151742, 13 pages. (2018) Zbl1417.34166MR3866998DOI10.1155/2018/3151742
- Tunç, C., Tunç, O., 10.1016/j.jare.2015.04.005, J. Adv. Research 7 (2016), 165-168. (2016) DOI10.1016/j.jare.2015.04.005
- Tunç, C., Tunç, O., 10.1016/j.jaubas.2016.12.004, J. Assoc. Arab Universit. Basic Appl. Sci. 24 (2017), 169-175. (2017) DOI10.1016/j.jaubas.2016.12.004
- Tunç, C., Tunç, O., 10.1080/16583655.2019.1595359, J. Taibah Univ. Sci. 13 (2019), 468-477. (2019) DOI10.1080/16583655.2019.1595359
- Willett, D. W., Wong, J. S. W., 10.1137/0114087, SIAM J. Appl. Math. 14 (1966), 1084-1098. (1966) Zbl0173.34703MR0208091DOI10.1137/0114087
- Willett, D. W., Wong, J. S. W., 10.1016/0022-247X(68)90112-1, J. Math. Anal. Appl. 23 (1968), 15-24. (1968) Zbl0165.40803MR0226117DOI10.1016/0022-247X(68)90112-1
- Wong, J. S. W., 10.1137/0114017, SIAM J. Appl. Math. 14 (1966), 209-214. (1966) Zbl0143.31803MR0203167DOI10.1137/0114017
- Wong, J. S. W., Burton, T. A., 10.1007/BF01297623, Monatsh. Math. 69 (1965), 368-374. (1965) Zbl0142.06402MR0186885DOI10.1007/BF01297623
- Yao, H., Wang, J., Globally asymptotic stability of a kind of third-order delay differential system, Int. J. Nonlinear Sci. 10 (2010), 82-87. (2010) Zbl1235.34198MR2721073
- Yoshizawa, T., Stability Theory by Lyapunov's Second Method, Publications of the Mathematical Society of Japan 9. Mathematical Society of Japan, Tokyo (1966). (1966) Zbl0144.10802MR0208086
- Zarghamee, M. S., Mehri, B., 10.1016/0022-247X(70)90003-X, J. Math. Anal. Appl. 31 (1970), 504-508. (1970) Zbl0229.34031MR0265686DOI10.1016/0022-247X(70)90003-X
- Zhang, B., 10.1090/S0002-9939-1992-1094508-1, Proc. Am. Math. Soc. 115 (1992), 779-785. (1992) Zbl0756.34075MR1094508DOI10.1090/S0002-9939-1992-1094508-1
- Zhang, B., 10.1006/jmaa.1996.0216, J. Math. Anal. Appl. 200 (1996), 453-473. (1996) Zbl0855.34090MR1391161DOI10.1006/jmaa.1996.0216
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.