Continuability, boundedness, and convergence to zero of solutions of a perturbed nonlinear ordinary differential equation

John R. Graef; Paul W. Spikes

Czechoslovak Mathematical Journal (1995)

  • Volume: 45, Issue: 4, page 663-683
  • ISSN: 0011-4642

How to cite

top

Graef, John R., and Spikes, Paul W.. "Continuability, boundedness, and convergence to zero of solutions of a perturbed nonlinear ordinary differential equation." Czechoslovak Mathematical Journal 45.4 (1995): 663-683. <http://eudml.org/doc/31496>.

@article{Graef1995,
author = {Graef, John R., Spikes, Paul W.},
journal = {Czechoslovak Mathematical Journal},
keywords = {asymptotic behaviour; second-order nonlinear differential equation},
language = {eng},
number = {4},
pages = {663-683},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Continuability, boundedness, and convergence to zero of solutions of a perturbed nonlinear ordinary differential equation},
url = {http://eudml.org/doc/31496},
volume = {45},
year = {1995},
}

TY - JOUR
AU - Graef, John R.
AU - Spikes, Paul W.
TI - Continuability, boundedness, and convergence to zero of solutions of a perturbed nonlinear ordinary differential equation
JO - Czechoslovak Mathematical Journal
PY - 1995
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 45
IS - 4
SP - 663
EP - 683
LA - eng
KW - asymptotic behaviour; second-order nonlinear differential equation
UR - http://eudml.org/doc/31496
ER -

References

top
  1. 10.1016/0022-247X(87)90324-6, J. Math. Anal. Appl. 123 (1987), 461–479. (1987) Zbl0642.34031MR0883702DOI10.1016/0022-247X(87)90324-6
  2. 10.1137/0127013, SIAM J. Appl. Math. 27 (1974), 159–166. (1974) Zbl0289.34067MR0350138DOI10.1137/0127013
  3. Attractivity of the origin for the equation x ¨ + f ( t , x , x ˙ ) | x ˙ | α x ˙ + g ( x ) = 0 , J. Math. Anal. Appl. 65 (1978), 321–332. (1978) MR0506309
  4. Qualitative behavior of a generalized Emden-Fowler differential system, Czech. Math. J. 41 (116) (1991), 454–466. (1991) MR1117799
  5. 10.1016/0022-247X(84)90191-4, J. Math. Anal. Appl. 102 (1984), 539–548. (1984) MR0755982DOI10.1016/0022-247X(84)90191-4
  6. Boundedness and asymptotic behavior of solutions of second order nonlinear differential equations, Publ. Math. Debrecen 36 (1989), 85–99. (1989) MR1047021
  7. 10.1016/0022-0396(75)90056-X, J. Differential Equations 17 (1975), 461–476. (1975) MR0361275DOI10.1016/0022-0396(75)90056-X
  8. Asymptotic properties of solutions of a second order nonlinear differential equation, Publ. Math. Debrecen 24 (1977), 39–51. (1977) MR0454188
  9. 10.1016/0022-247X(78)90127-0, J. Math. Anal. Appl. 62 (1978), 295–309. (1978) MR0492527DOI10.1016/0022-247X(78)90127-0
  10. Differential Equations: Stability, Oscillations, Time Lag, Academic Press, New York, 1966. (1966) MR0216103
  11. On the stability of the zero solution of certain second order non-linear differential equations, Acta Sci. Math. (Szeged) 32 (1971), 1–9. (1971) Zbl0216.11704MR0306639
  12. On the asymptotic behavior of the solutions of ( p ( t ) x ' ) ' + q ( t ) f ( x ) = 0 , Publ. Math. Debrecen 19 (1972), 225–237. (1972) MR0326064
  13. On the stability of the zero solution of nonlinear second order differential equations, Acta Sci. Math. (Szeged) (to appear). (to appear) Zbl0790.34046MR1243290
  14. Attractivity theorems for second order nonlinear differential equations, Publ. Math. Debrecen 30 (1983), 303–310. (1983) Zbl0601.34039MR0739492
  15. Some attractivity results for second order nonlinear ordinary differential equations, in: Qualitative Theory of Differential Equations, B. Sz.-Nagy and L. Hatvani (eds.), Colloquia Mathematica Societatis János Bolyai, Vol. 53, North-Holland, Amsterdam, 1983, pp. 291–305. (1983) MR1062654
  16. Boundedness, convergence and global stability of solutions of a nonlinear differential equation of the second order, Publ. Math. Debrecen 37 (1990), 193–201. (1990) MR1082298
  17. Boundedness and stability of solutions of a certain nonlinear differential equation of the second order, Publ. Math. Debrecen 40 (1992), 57–70. (1992) MR1154490
  18. 10.1307/mmj/1028999309, Michigan Math. J. 12 (1965), 193–196. (1965) MR0176168DOI10.1307/mmj/1028999309
  19. Properties of solutions of a second-order nonlinear differential equation on a half-axis, Differentsial’nye Uravneniya 7 (1971), 1330–1332. (1971) MR0288349
  20. The boundedness of solutions of a second-order differential equation, Differentsial’nye Uravneniya 9 (1973), 1994–1999. (Russian) (1973) Zbl0313.34031MR0333345
  21. Asymptotic properties of solutions of a second order differential equation, Bull. Calcutta Math. Soc. 83 (1991), 209–226. (1991) Zbl0755.34028MR1199402
  22. 10.2140/pjm.1977.72.523, Pacific J. Math. 72 (1977), 523–535. (1977) Zbl0366.34040MR0466793DOI10.2140/pjm.1977.72.523
  23. 10.1016/0022-247X(78)90087-2, J. Math. Anal. Appl. 63 (1978), 416–420. (1978) Zbl0383.34042MR0481295DOI10.1016/0022-247X(78)90087-2
  24. Some stability type results for a nonlinear differential equation, Rend. Math. (6) 9 (1976), 259–271. (1976) Zbl0346.34034MR0409980
  25. On the asymptotic behavior of the solutions of the differential equation x ' ' + f x = 0 , Bul. Stiint. Inst. Politehn. Cluj 14 (1971), 21–25. (1971) MR0318608
  26. Boundedness and asymptotic behavior of solutions of a second-order functional differential equation, Ann. Differential Equations 8 (1992), 367–378. (1992) Zbl0765.34053MR1192175
  27. Some properties of the solutions of ( p ( t ) x ' ) ' + q ( t ) f ( x ) = 0 , J. Math. Anal. Appl. 23 (1968), 15–24. (1968) MR0226117
  28. 10.1137/0115077, SIAM J. Appl. Math. 15 (1967), 889–892. (1967) MR0221042DOI10.1137/0115077
  29. 10.1017/S144678870000745X, J. Austral. Math. Soc. 9 (1969), 496–502. (1969) Zbl0184.11905MR0241772DOI10.1017/S144678870000745X
  30. 10.1016/0362-546X(84)90092-0, Nonlinear Anal. 8 (1984), 541–547. (1984) Zbl0537.34030MR0741607DOI10.1016/0362-546X(84)90092-0

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.