Null controllability of a coupled model in population dynamics
Mathematica Bohemica (2023)
- Volume: 148, Issue: 3, page 349-408
- ISSN: 0862-7959
Access Full Article
topAbstract
topHow to cite
topEcharroudi, Younes. "Null controllability of a coupled model in population dynamics." Mathematica Bohemica 148.3 (2023): 349-408. <http://eudml.org/doc/299118>.
@article{Echarroudi2023,
abstract = {We are concerned with the null controllability of a linear coupled population dynamics system or the so-called prey-predator model with Holling type I functional response of predator wherein both equations are structured in age and space. It is worth mentioning that in our case, the space variable is viewed as the “gene type” of population. The studied system is with two different dispersion coefficients which depend on the gene type variable and degenerate in the boundary. This system will be governed by one control force. To reach our goal, we develop first a Carleman type inequality for its adjoint system and consequently the pertinent observability inequality. Note that such a system is obtained via the original paradigm using the Lagrangian method. Afterwards, with the help of a cost function we will be able to deduce the existence of a control acting on a subset of the gene type domain and which steers both populations of a certain class of age to extinction in a finite time.},
author = {Echarroudi, Younes},
journal = {Mathematica Bohemica},
keywords = {degenerate population dynamics model; Lotka-Volterra system; Carleman estimate; observability inequality; null controllability},
language = {eng},
number = {3},
pages = {349-408},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Null controllability of a coupled model in population dynamics},
url = {http://eudml.org/doc/299118},
volume = {148},
year = {2023},
}
TY - JOUR
AU - Echarroudi, Younes
TI - Null controllability of a coupled model in population dynamics
JO - Mathematica Bohemica
PY - 2023
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 148
IS - 3
SP - 349
EP - 408
AB - We are concerned with the null controllability of a linear coupled population dynamics system or the so-called prey-predator model with Holling type I functional response of predator wherein both equations are structured in age and space. It is worth mentioning that in our case, the space variable is viewed as the “gene type” of population. The studied system is with two different dispersion coefficients which depend on the gene type variable and degenerate in the boundary. This system will be governed by one control force. To reach our goal, we develop first a Carleman type inequality for its adjoint system and consequently the pertinent observability inequality. Note that such a system is obtained via the original paradigm using the Lagrangian method. Afterwards, with the help of a cost function we will be able to deduce the existence of a control acting on a subset of the gene type domain and which steers both populations of a certain class of age to extinction in a finite time.
LA - eng
KW - degenerate population dynamics model; Lotka-Volterra system; Carleman estimate; observability inequality; null controllability
UR - http://eudml.org/doc/299118
ER -
References
top- Ainseba, B., 10.1016/S0022-247X(02)00238-X, J. Math. Anal. Appl. 275 (2002), 562-574. (2002) Zbl1005.92023MR1943766DOI10.1016/S0022-247X(02)00238-X
- Ainseba, B., 10.1016/j.jmaa.2012.01.059, J. Math. Anal. Appl. 393 (2012), 328. (2012) Zbl1260.92095MR2921673DOI10.1016/j.jmaa.2012.01.059
- Ainseba, B., Aniţa, S., 10.1155/S108533750100063X, Abstr. Appl. Anal. 6 (2001), 357-368. (2001) Zbl0995.93008MR1880930DOI10.1155/S108533750100063X
- Ainseba, B., Aniţa, S., Internal exact controllability of the linear population dynamics with diffusion, Electron. J. Differ. Equ. 2004 (2004), Article ID 112, 11 pages. (2004) Zbl1134.93311MR2108883
- Ainseba, B., Aniţa, S., 10.1016/j.na.2004.09.055, Nonlinear Anal., Theory Methods Appl., Ser. A 61 (2005), 491-501. (2005) Zbl1072.35090MR2126609DOI10.1016/j.na.2004.09.055
- Ainseba, B., Echarroudi, Y., Maniar, L., Null controllability of a population dynamics with degenerate diffusion, Differ. Integral Equ. 26 (2013), 1397-1410. (2013) Zbl1313.35193MR3129015
- Ainseba, B., Langlais, M., 10.1006/jmaa.2000.6921, J. Math. Anal. Appl. 248 (2000), 455-474. (2000) Zbl0964.93045MR1776023DOI10.1006/jmaa.2000.6921
- Hassi, E. M. Ait Ben, Khodja, F. Ammar, Hajjaj, A., Maniar, L., 10.4171/PM/1895, Port. Math. (N.S.) 68 (2011), 345-367. (2011) Zbl1231.35103MR2832802DOI10.4171/PM/1895
- Alabau-Boussouira, F., Cannarsa, P., Fragnelli, G., 10.1007/s00028-006-0222-6, J. Evol. Equ. 6 (2006), 161-204. (2006) Zbl1103.35052MR2227693DOI10.1007/s00028-006-0222-6
- Aniţa, S., 10.1007/978-94-015-9436-3, Mathematical Modelling: Theory and Applications 11. Kluwer Acadamic, Dordrecht (2000). (2000) Zbl0960.92026MR1797596DOI10.1007/978-94-015-9436-3
- Apreutesei, N., Dimitriu, G., 10.1016/j.cam.2010.05.040, J. Comput. Appl. Math. 235 (2010), 366-379. (2010) Zbl1205.65274MR2677695DOI10.1016/j.cam.2010.05.040
- Barbu, V., Iannelli, M., Martcheva, M., 10.1006/jmaa.2000.7075, J. Math. Anal. Appl. 253 (2001), 142-165. (2001) Zbl0961.92024MR1804594DOI10.1006/jmaa.2000.7075
- Boutaayamou, I., Echarroudi, Y., Null controllability of population dynamics with interior degeneracy, Electron. J. Differ. Equ. 2017 (2017), Article ID 131, 21 pages. (2017) Zbl1370.35183MR3665593
- Boutaayamou, I., Fragnelli, G., 10.1016/j.na.2019.111742, Nonlinear Anal., Theory Methods Appl., Ser. A 195 (2020), Article ID 111742, 29 pages. (2020) Zbl1435.35398MR4052601DOI10.1016/j.na.2019.111742
- Boutaayamou, I., Salhi, J., Null controllability for linear parabolic cascade systems with interior degeneracy, Electron. J. Differ. Equ. 2016 (2016), Article ID 305, 22 pages. (2016) Zbl1353.35184MR3604750
- Cabello, T., Gámez, M., Varga, Z., 10.1142/S0218339007002325, J. Biol. Syst. 15 (2007), 515-524. (2007) Zbl1146.92326DOI10.1142/S0218339007002325
- Campiti, M., Metafune, G., Pallara, D., 10.1007/PL00005959, Semigroup Forum 57 (1998), 1-36. (1998) Zbl0915.47029MR1621852DOI10.1007/PL00005959
- Cannarsa, P., Fragnelli, G., Null controllability of semilinear degenerate parabolic equations in bounded domains, Electron. J. Differ. Equ. 2006 (2006), Article ID 136, 20 pages. (2006) Zbl1112.35335MR2276561
- Cannarsa, P., Fragnelli, G., Rocchetti, D., 10.3934/nhm.2007.2.695, Netw. Heterog. Media 2 (2007), 695-715. (2007) Zbl1140.93011MR2357764DOI10.3934/nhm.2007.2.695
- Cannarsa, P., Fragnelli, G., Rocchetti, D., 10.1007/s00028-008-0353-34, J. Evol. Equ. 8 (2008), 583-616. (2008) Zbl1176.35108MR2460930DOI10.1007/s00028-008-0353-34
- Cannarsa, P., Fragnelli, G., Vancostenoble, J., 10.1007/0-387-33882-9_15, Systems, Control, Modeling and Optimization IFIP International Federation for Information Processing 202. Springer, New York (2006), 163-173. (2006) Zbl1214.93021MR2241704DOI10.1007/0-387-33882-9_15
- Cannarsa, P., Fragnelli, G., Vancostenoble, J., 10.1016/j.jmaa.2005.07.006, J. Math. Anal. Appl. 320 (2006), 804-818. (2006) Zbl1177.93016MR2225996DOI10.1016/j.jmaa.2005.07.006
- Cannarsa, P., Martinez, P., Vancostenoble, J., 10.3934/cpaa.2004.3.607, Commun. Pure Appl. Anal. 3 (2004), 607-635. (2004) Zbl1063.35092MR2106292DOI10.3934/cpaa.2004.3.607
- Cannarsa, P., Martinez, P., Vancostenoble, J., Null controllability of degenerate heat equations, Adv. Differ. Equ. 10 (2005), 153-190. (2005) Zbl1145.35408MR2106129
- Dawes, J. H. P., Souza, M. O., 10.1016/j.jtbi.2013.02.017, J. Theor. Biol. 327 (2013), 11-22. (2013) Zbl1322.92056MR3046076DOI10.1016/j.jtbi.2013.02.017
- Echarroudi, Y., Maniar, L., Null controllability of a model in population dynamics, Electron. J. Differ. Equ. 2014 (2014), Article ID 240, 20 pages. (2014) Zbl06430755MR3291740
- Echarroudi, Y., Maniar, L., 10.1007/978-3-030-77704-3_10, Studies in Evolution Equations and Related Topics STEAM-H: Science, Technology, Engineering, Agriculture, Mathematics & Health. Springer, Cham (2021), 211-268. (2021) Zbl07464638MR4367456DOI10.1007/978-3-030-77704-3_10
- Fragnelli, G., 10.1155/IJMMS.2005.3273, Int. J. Math. Math. Sci. 2005 (2005), 3273-3289. (2005) Zbl1084.92029MR2208054DOI10.1155/IJMMS.2005.3273
- Fragnelli, G., 10.3934/dcdss.2013.6.687, Discrete Contin. Dyn. Syst., Ser. S 6 (2013), 687-701. (2013) Zbl1258.93025MR3010677DOI10.3934/dcdss.2013.6.687
- Fragnelli, G., 10.1016/j.matpur.2018.01.003, J. Math. Pures Appl. (9) 115 (2018), 74-126. (2018) Zbl1391.35238MR3808342DOI10.1016/j.matpur.2018.01.003
- Fragnelli, G., 10.1515/anona-2020-0034, Adv. Nonlinear Anal. 9 (2020), 1102-1129. (2020) Zbl1427.35141MR4019739DOI10.1515/anona-2020-0034
- Fragnelli, G., Idrissi, A., Maniar, L., 10.3934/dcdsb.2007.7.735, Discrete Contin. Dyn. Syst., Ser. B 7 (2007), 735-754. (2007) Zbl1211.35046MR2291870DOI10.3934/dcdsb.2007.7.735
- Fragnelli, G., Martinez, P., Vancostenoble, J., 10.1142/S0218202505000455, Math. Models Methods Appl. Sci. 15 (2005), 507-554. (2005) Zbl1092.92037MR2137524DOI10.1142/S0218202505000455
- Fragnelli, G., Mugnai, D., 10.1515/anona-2013-0015, Adv. Nonlinear Anal. 2 (2013), 339-378. (2013) Zbl1282.35101MR3199737DOI10.1515/anona-2013-0015
- Fragnelli, G., Mugnai, D., 10.1090/memo/1146, Mem. Am. Math. Soc. 1146 (2016), 88 pages. (2016) Zbl1377.93043MR3498150DOI10.1090/memo/1146
- Fragnelli, G., Tonetto, L., 10.1016/j.jmaa.2003.08.047, J. Math. Anal. Appl. 289 (2004), 90-99. (2004) Zbl1109.34042MR2020529DOI10.1016/j.jmaa.2003.08.047
- Fursikov, A. V., Imanuvilov, O. Y., Controllability of Evolutions Equations, Lecture Notes Series, Seoul 34. Seoul National University, Seoul (1996). (1996) Zbl0862.49004MR1406566
- Hajjaj, A., Maniar, L., Salhi, J., Carleman estimates and null controllability of degenerate/singular parabolic systems, Electron. J. Differ. Equ. 2016 (2016), Article ID 292, 25 pages. (2016) Zbl1353.35186MR3578313
- Hegoburu, N., Tucsnak, M., 10.3934/mcrf.2018030, Math. Control Relat. Fields 8 (2018), 707-720. (2018) Zbl1417.92131MR3917460DOI10.3934/mcrf.2018030
- Jia, Y., Wu, J., Xu, H.-K., 10.1016/j.camwa.2014.08.016, Comput. Math. Appl. 68 (2014), 1220-1228. (2014) Zbl1367.92129MR3272537DOI10.1016/j.camwa.2014.08.016
- Juska, A., Gouveia, L., Gabriel, J., Koneck, S., 10.1111/1467-9523.00146, Sociologia Ruralis 40 (2000), 249-271. (2000) DOI10.1111/1467-9523.00146
- Kooij, R. E., Zegeling, A., 10.1006/jmaa.1996.0093, J. Math. Anal. Appl. 198 (1996), 473-489. (1996) Zbl0851.34030MR1376275DOI10.1006/jmaa.1996.0093
- Langlais, M., 10.1137/0516037, SIAM J. Math. Anal. 16 (1985), 510-529. (1985) Zbl0589.92013MR0783977DOI10.1137/0516037
- Liu, B., Zhang, Y., Chen, L., 10.1016/j.chaos.2003.12.060, Chaos Solitons Fractals 22 (2004), 123-134. (2004) Zbl1058.92047MR2057553DOI10.1016/j.chaos.2003.12.060
- Liu, X., Huang, Q., 10.1016/j.biosystems.2018.05.005, Biosystems 169-170 (2018), 26-39. (2018) DOI10.1016/j.biosystems.2018.05.005
- Mozorov, A. Y., 10.1016/j.jtbi.2010.04.016, J. Theor. Biol. 265 (2010), 45-54. (2010) Zbl1406.92676MR2981553DOI10.1016/j.jtbi.2010.04.016
- Pavel, L., 10.1137/090767303, SIAM J. Control Optim. 51 (2013), 2132-2151. (2013) Zbl1275.35138MR3053572DOI10.1137/090767303
- Peng, R., Shi, J., 10.1016/j.jde.2009.03.008, J. Differ. Equations 247 (2009), 866-886. (2009) Zbl1169.35328MR2528495DOI10.1016/j.jde.2009.03.008
- Piazzera, S., 10.1002/mma.462, Math. Methods Appl. Sci. 27 (2004), 427-439. (2004) Zbl1038.35145MR2034234DOI10.1002/mma.462
- Pozio, M. A., Tesei, A., 10.1007/BF03167082, Japan J. Appl. Math. 2 (1985), 351-380. (1985) MR0839335DOI10.1007/BF03167082
- Pugliese, A., Tonetto, L., 10.1016/S0022-247X(03)00295-6, J. Math. Anal. Appl. 284 (2003), 144-164. (2003) Zbl1039.35130MR1996124DOI10.1016/S0022-247X(03)00295-6
- Rhandi, A., Schnaubelt, R., 10.3934/dcds.1999.5.663, Discrete Contin. Dyn. Syst. 5 (1999), 663-683. (1999) Zbl1002.92016MR1696337DOI10.3934/dcds.1999.5.663
- Salhi, J., 10.14232/ejqtde.2018.1.31, Electron. J. Qual. Theory Differ. Equ. 2018 (2018), Article ID 31, 28 pages. (2018) Zbl1413.35269MR3811494DOI10.14232/ejqtde.2018.1.31
- Seo, G., DeAngelis, D. L., 10.1007/s00332-011-9101-6, J. Nonlinear Sci. 21 (2011), 811-833. (2011) Zbl1238.92049MR2860930DOI10.1007/s00332-011-9101-6
- Skalski, G. T., Gilliam, J. F., 10.1890/0012-9658(2001)082[3083:FRWPIV]2.0.CO;2, Ecology 82 (2001), 3083-3092. (2001) DOI10.1890/0012-9658(2001)082[3083:FRWPIV]2.0.CO;2
- Traore, O., 10.1155/IJMMS/2006/49279, Int. J. Math. Math. Sci. 2006 (2006), Article ID 49279, 20 pages. (2006) Zbl1127.93017MR2268531DOI10.1155/IJMMS/2006/49279
- Wang, W., Zhang, L., Wang, H., Li, Z., 10.1016/j.ecolmodel.2009.09.011, Ecological Modelling 221 (2010), 131-140. (2010) MR3075712DOI10.1016/j.ecolmodel.2009.09.011
- Webb, G. F., 10.1007/978-3-540-78273-5_1, Structured Population Models in Biology and Epidemiology Lecture Notes in Mathematics 1936. Springer, Berlin (2008), 1-49. (2008) MR2433574DOI10.1007/978-3-540-78273-5_1
- Zhang, Y., Xu, Z., Liu, B., Chen, L., 10.1142/S0218339005001392, J. Biol. Syst. 13 (2005), 45-58. (2005) Zbl1073.92061DOI10.1142/S0218339005001392
- Zhao, C., Wang, M., Zhao, P., 10.1016/j.mcm.2004.07.019, Math. Comput. Modelling 42 (2005), 573-584. (2005) Zbl1088.92063MR2173475DOI10.1016/j.mcm.2004.07.019
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.