Null controllability of a coupled model in population dynamics

Younes Echarroudi

Mathematica Bohemica (2023)

  • Volume: 148, Issue: 3, page 349-408
  • ISSN: 0862-7959

Abstract

top
We are concerned with the null controllability of a linear coupled population dynamics system or the so-called prey-predator model with Holling type I functional response of predator wherein both equations are structured in age and space. It is worth mentioning that in our case, the space variable is viewed as the “gene type” of population. The studied system is with two different dispersion coefficients which depend on the gene type variable and degenerate in the boundary. This system will be governed by one control force. To reach our goal, we develop first a Carleman type inequality for its adjoint system and consequently the pertinent observability inequality. Note that such a system is obtained via the original paradigm using the Lagrangian method. Afterwards, with the help of a cost function we will be able to deduce the existence of a control acting on a subset of the gene type domain and which steers both populations of a certain class of age to extinction in a finite time.

How to cite

top

Echarroudi, Younes. "Null controllability of a coupled model in population dynamics." Mathematica Bohemica 148.3 (2023): 349-408. <http://eudml.org/doc/299118>.

@article{Echarroudi2023,
abstract = {We are concerned with the null controllability of a linear coupled population dynamics system or the so-called prey-predator model with Holling type I functional response of predator wherein both equations are structured in age and space. It is worth mentioning that in our case, the space variable is viewed as the “gene type” of population. The studied system is with two different dispersion coefficients which depend on the gene type variable and degenerate in the boundary. This system will be governed by one control force. To reach our goal, we develop first a Carleman type inequality for its adjoint system and consequently the pertinent observability inequality. Note that such a system is obtained via the original paradigm using the Lagrangian method. Afterwards, with the help of a cost function we will be able to deduce the existence of a control acting on a subset of the gene type domain and which steers both populations of a certain class of age to extinction in a finite time.},
author = {Echarroudi, Younes},
journal = {Mathematica Bohemica},
keywords = {degenerate population dynamics model; Lotka-Volterra system; Carleman estimate; observability inequality; null controllability},
language = {eng},
number = {3},
pages = {349-408},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Null controllability of a coupled model in population dynamics},
url = {http://eudml.org/doc/299118},
volume = {148},
year = {2023},
}

TY - JOUR
AU - Echarroudi, Younes
TI - Null controllability of a coupled model in population dynamics
JO - Mathematica Bohemica
PY - 2023
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 148
IS - 3
SP - 349
EP - 408
AB - We are concerned with the null controllability of a linear coupled population dynamics system or the so-called prey-predator model with Holling type I functional response of predator wherein both equations are structured in age and space. It is worth mentioning that in our case, the space variable is viewed as the “gene type” of population. The studied system is with two different dispersion coefficients which depend on the gene type variable and degenerate in the boundary. This system will be governed by one control force. To reach our goal, we develop first a Carleman type inequality for its adjoint system and consequently the pertinent observability inequality. Note that such a system is obtained via the original paradigm using the Lagrangian method. Afterwards, with the help of a cost function we will be able to deduce the existence of a control acting on a subset of the gene type domain and which steers both populations of a certain class of age to extinction in a finite time.
LA - eng
KW - degenerate population dynamics model; Lotka-Volterra system; Carleman estimate; observability inequality; null controllability
UR - http://eudml.org/doc/299118
ER -

References

top
  1. Ainseba, B., 10.1016/S0022-247X(02)00238-X, J. Math. Anal. Appl. 275 (2002), 562-574. (2002) Zbl1005.92023MR1943766DOI10.1016/S0022-247X(02)00238-X
  2. Ainseba, B., 10.1016/j.jmaa.2012.01.059, J. Math. Anal. Appl. 393 (2012), 328. (2012) Zbl1260.92095MR2921673DOI10.1016/j.jmaa.2012.01.059
  3. Ainseba, B., Aniţa, S., 10.1155/S108533750100063X, Abstr. Appl. Anal. 6 (2001), 357-368. (2001) Zbl0995.93008MR1880930DOI10.1155/S108533750100063X
  4. Ainseba, B., Aniţa, S., Internal exact controllability of the linear population dynamics with diffusion, Electron. J. Differ. Equ. 2004 (2004), Article ID 112, 11 pages. (2004) Zbl1134.93311MR2108883
  5. Ainseba, B., Aniţa, S., 10.1016/j.na.2004.09.055, Nonlinear Anal., Theory Methods Appl., Ser. A 61 (2005), 491-501. (2005) Zbl1072.35090MR2126609DOI10.1016/j.na.2004.09.055
  6. Ainseba, B., Echarroudi, Y., Maniar, L., Null controllability of a population dynamics with degenerate diffusion, Differ. Integral Equ. 26 (2013), 1397-1410. (2013) Zbl1313.35193MR3129015
  7. Ainseba, B., Langlais, M., 10.1006/jmaa.2000.6921, J. Math. Anal. Appl. 248 (2000), 455-474. (2000) Zbl0964.93045MR1776023DOI10.1006/jmaa.2000.6921
  8. Hassi, E. M. Ait Ben, Khodja, F. Ammar, Hajjaj, A., Maniar, L., 10.4171/PM/1895, Port. Math. (N.S.) 68 (2011), 345-367. (2011) Zbl1231.35103MR2832802DOI10.4171/PM/1895
  9. Alabau-Boussouira, F., Cannarsa, P., Fragnelli, G., 10.1007/s00028-006-0222-6, J. Evol. Equ. 6 (2006), 161-204. (2006) Zbl1103.35052MR2227693DOI10.1007/s00028-006-0222-6
  10. Aniţa, S., 10.1007/978-94-015-9436-3, Mathematical Modelling: Theory and Applications 11. Kluwer Acadamic, Dordrecht (2000). (2000) Zbl0960.92026MR1797596DOI10.1007/978-94-015-9436-3
  11. Apreutesei, N., Dimitriu, G., 10.1016/j.cam.2010.05.040, J. Comput. Appl. Math. 235 (2010), 366-379. (2010) Zbl1205.65274MR2677695DOI10.1016/j.cam.2010.05.040
  12. Barbu, V., Iannelli, M., Martcheva, M., 10.1006/jmaa.2000.7075, J. Math. Anal. Appl. 253 (2001), 142-165. (2001) Zbl0961.92024MR1804594DOI10.1006/jmaa.2000.7075
  13. Boutaayamou, I., Echarroudi, Y., Null controllability of population dynamics with interior degeneracy, Electron. J. Differ. Equ. 2017 (2017), Article ID 131, 21 pages. (2017) Zbl1370.35183MR3665593
  14. Boutaayamou, I., Fragnelli, G., 10.1016/j.na.2019.111742, Nonlinear Anal., Theory Methods Appl., Ser. A 195 (2020), Article ID 111742, 29 pages. (2020) Zbl1435.35398MR4052601DOI10.1016/j.na.2019.111742
  15. Boutaayamou, I., Salhi, J., Null controllability for linear parabolic cascade systems with interior degeneracy, Electron. J. Differ. Equ. 2016 (2016), Article ID 305, 22 pages. (2016) Zbl1353.35184MR3604750
  16. Cabello, T., Gámez, M., Varga, Z., 10.1142/S0218339007002325, J. Biol. Syst. 15 (2007), 515-524. (2007) Zbl1146.92326DOI10.1142/S0218339007002325
  17. Campiti, M., Metafune, G., Pallara, D., 10.1007/PL00005959, Semigroup Forum 57 (1998), 1-36. (1998) Zbl0915.47029MR1621852DOI10.1007/PL00005959
  18. Cannarsa, P., Fragnelli, G., Null controllability of semilinear degenerate parabolic equations in bounded domains, Electron. J. Differ. Equ. 2006 (2006), Article ID 136, 20 pages. (2006) Zbl1112.35335MR2276561
  19. Cannarsa, P., Fragnelli, G., Rocchetti, D., 10.3934/nhm.2007.2.695, Netw. Heterog. Media 2 (2007), 695-715. (2007) Zbl1140.93011MR2357764DOI10.3934/nhm.2007.2.695
  20. Cannarsa, P., Fragnelli, G., Rocchetti, D., 10.1007/s00028-008-0353-34, J. Evol. Equ. 8 (2008), 583-616. (2008) Zbl1176.35108MR2460930DOI10.1007/s00028-008-0353-34
  21. Cannarsa, P., Fragnelli, G., Vancostenoble, J., 10.1007/0-387-33882-9_15, Systems, Control, Modeling and Optimization IFIP International Federation for Information Processing 202. Springer, New York (2006), 163-173. (2006) Zbl1214.93021MR2241704DOI10.1007/0-387-33882-9_15
  22. Cannarsa, P., Fragnelli, G., Vancostenoble, J., 10.1016/j.jmaa.2005.07.006, J. Math. Anal. Appl. 320 (2006), 804-818. (2006) Zbl1177.93016MR2225996DOI10.1016/j.jmaa.2005.07.006
  23. Cannarsa, P., Martinez, P., Vancostenoble, J., 10.3934/cpaa.2004.3.607, Commun. Pure Appl. Anal. 3 (2004), 607-635. (2004) Zbl1063.35092MR2106292DOI10.3934/cpaa.2004.3.607
  24. Cannarsa, P., Martinez, P., Vancostenoble, J., Null controllability of degenerate heat equations, Adv. Differ. Equ. 10 (2005), 153-190. (2005) Zbl1145.35408MR2106129
  25. Dawes, J. H. P., Souza, M. O., 10.1016/j.jtbi.2013.02.017, J. Theor. Biol. 327 (2013), 11-22. (2013) Zbl1322.92056MR3046076DOI10.1016/j.jtbi.2013.02.017
  26. Echarroudi, Y., Maniar, L., Null controllability of a model in population dynamics, Electron. J. Differ. Equ. 2014 (2014), Article ID 240, 20 pages. (2014) Zbl06430755MR3291740
  27. Echarroudi, Y., Maniar, L., 10.1007/978-3-030-77704-3_10, Studies in Evolution Equations and Related Topics STEAM-H: Science, Technology, Engineering, Agriculture, Mathematics & Health. Springer, Cham (2021), 211-268. (2021) Zbl07464638MR4367456DOI10.1007/978-3-030-77704-3_10
  28. Fragnelli, G., 10.1155/IJMMS.2005.3273, Int. J. Math. Math. Sci. 2005 (2005), 3273-3289. (2005) Zbl1084.92029MR2208054DOI10.1155/IJMMS.2005.3273
  29. Fragnelli, G., 10.3934/dcdss.2013.6.687, Discrete Contin. Dyn. Syst., Ser. S 6 (2013), 687-701. (2013) Zbl1258.93025MR3010677DOI10.3934/dcdss.2013.6.687
  30. Fragnelli, G., 10.1016/j.matpur.2018.01.003, J. Math. Pures Appl. (9) 115 (2018), 74-126. (2018) Zbl1391.35238MR3808342DOI10.1016/j.matpur.2018.01.003
  31. Fragnelli, G., 10.1515/anona-2020-0034, Adv. Nonlinear Anal. 9 (2020), 1102-1129. (2020) Zbl1427.35141MR4019739DOI10.1515/anona-2020-0034
  32. Fragnelli, G., Idrissi, A., Maniar, L., 10.3934/dcdsb.2007.7.735, Discrete Contin. Dyn. Syst., Ser. B 7 (2007), 735-754. (2007) Zbl1211.35046MR2291870DOI10.3934/dcdsb.2007.7.735
  33. Fragnelli, G., Martinez, P., Vancostenoble, J., 10.1142/S0218202505000455, Math. Models Methods Appl. Sci. 15 (2005), 507-554. (2005) Zbl1092.92037MR2137524DOI10.1142/S0218202505000455
  34. Fragnelli, G., Mugnai, D., 10.1515/anona-2013-0015, Adv. Nonlinear Anal. 2 (2013), 339-378. (2013) Zbl1282.35101MR3199737DOI10.1515/anona-2013-0015
  35. Fragnelli, G., Mugnai, D., 10.1090/memo/1146, Mem. Am. Math. Soc. 1146 (2016), 88 pages. (2016) Zbl1377.93043MR3498150DOI10.1090/memo/1146
  36. Fragnelli, G., Tonetto, L., 10.1016/j.jmaa.2003.08.047, J. Math. Anal. Appl. 289 (2004), 90-99. (2004) Zbl1109.34042MR2020529DOI10.1016/j.jmaa.2003.08.047
  37. Fursikov, A. V., Imanuvilov, O. Y., Controllability of Evolutions Equations, Lecture Notes Series, Seoul 34. Seoul National University, Seoul (1996). (1996) Zbl0862.49004MR1406566
  38. Hajjaj, A., Maniar, L., Salhi, J., Carleman estimates and null controllability of degenerate/singular parabolic systems, Electron. J. Differ. Equ. 2016 (2016), Article ID 292, 25 pages. (2016) Zbl1353.35186MR3578313
  39. Hegoburu, N., Tucsnak, M., 10.3934/mcrf.2018030, Math. Control Relat. Fields 8 (2018), 707-720. (2018) Zbl1417.92131MR3917460DOI10.3934/mcrf.2018030
  40. Jia, Y., Wu, J., Xu, H.-K., 10.1016/j.camwa.2014.08.016, Comput. Math. Appl. 68 (2014), 1220-1228. (2014) Zbl1367.92129MR3272537DOI10.1016/j.camwa.2014.08.016
  41. Juska, A., Gouveia, L., Gabriel, J., Koneck, S., 10.1111/1467-9523.00146, Sociologia Ruralis 40 (2000), 249-271. (2000) DOI10.1111/1467-9523.00146
  42. Kooij, R. E., Zegeling, A., 10.1006/jmaa.1996.0093, J. Math. Anal. Appl. 198 (1996), 473-489. (1996) Zbl0851.34030MR1376275DOI10.1006/jmaa.1996.0093
  43. Langlais, M., 10.1137/0516037, SIAM J. Math. Anal. 16 (1985), 510-529. (1985) Zbl0589.92013MR0783977DOI10.1137/0516037
  44. Liu, B., Zhang, Y., Chen, L., 10.1016/j.chaos.2003.12.060, Chaos Solitons Fractals 22 (2004), 123-134. (2004) Zbl1058.92047MR2057553DOI10.1016/j.chaos.2003.12.060
  45. Liu, X., Huang, Q., 10.1016/j.biosystems.2018.05.005, Biosystems 169-170 (2018), 26-39. (2018) DOI10.1016/j.biosystems.2018.05.005
  46. Mozorov, A. Y., 10.1016/j.jtbi.2010.04.016, J. Theor. Biol. 265 (2010), 45-54. (2010) Zbl1406.92676MR2981553DOI10.1016/j.jtbi.2010.04.016
  47. Pavel, L., 10.1137/090767303, SIAM J. Control Optim. 51 (2013), 2132-2151. (2013) Zbl1275.35138MR3053572DOI10.1137/090767303
  48. Peng, R., Shi, J., 10.1016/j.jde.2009.03.008, J. Differ. Equations 247 (2009), 866-886. (2009) Zbl1169.35328MR2528495DOI10.1016/j.jde.2009.03.008
  49. Piazzera, S., 10.1002/mma.462, Math. Methods Appl. Sci. 27 (2004), 427-439. (2004) Zbl1038.35145MR2034234DOI10.1002/mma.462
  50. Pozio, M. A., Tesei, A., 10.1007/BF03167082, Japan J. Appl. Math. 2 (1985), 351-380. (1985) MR0839335DOI10.1007/BF03167082
  51. Pugliese, A., Tonetto, L., 10.1016/S0022-247X(03)00295-6, J. Math. Anal. Appl. 284 (2003), 144-164. (2003) Zbl1039.35130MR1996124DOI10.1016/S0022-247X(03)00295-6
  52. Rhandi, A., Schnaubelt, R., 10.3934/dcds.1999.5.663, Discrete Contin. Dyn. Syst. 5 (1999), 663-683. (1999) Zbl1002.92016MR1696337DOI10.3934/dcds.1999.5.663
  53. Salhi, J., 10.14232/ejqtde.2018.1.31, Electron. J. Qual. Theory Differ. Equ. 2018 (2018), Article ID 31, 28 pages. (2018) Zbl1413.35269MR3811494DOI10.14232/ejqtde.2018.1.31
  54. Seo, G., DeAngelis, D. L., 10.1007/s00332-011-9101-6, J. Nonlinear Sci. 21 (2011), 811-833. (2011) Zbl1238.92049MR2860930DOI10.1007/s00332-011-9101-6
  55. Skalski, G. T., Gilliam, J. F., 10.1890/0012-9658(2001)082[3083:FRWPIV]2.0.CO;2, Ecology 82 (2001), 3083-3092. (2001) DOI10.1890/0012-9658(2001)082[3083:FRWPIV]2.0.CO;2
  56. Traore, O., 10.1155/IJMMS/2006/49279, Int. J. Math. Math. Sci. 2006 (2006), Article ID 49279, 20 pages. (2006) Zbl1127.93017MR2268531DOI10.1155/IJMMS/2006/49279
  57. Wang, W., Zhang, L., Wang, H., Li, Z., 10.1016/j.ecolmodel.2009.09.011, Ecological Modelling 221 (2010), 131-140. (2010) MR3075712DOI10.1016/j.ecolmodel.2009.09.011
  58. Webb, G. F., 10.1007/978-3-540-78273-5_1, Structured Population Models in Biology and Epidemiology Lecture Notes in Mathematics 1936. Springer, Berlin (2008), 1-49. (2008) MR2433574DOI10.1007/978-3-540-78273-5_1
  59. Zhang, Y., Xu, Z., Liu, B., Chen, L., 10.1142/S0218339005001392, J. Biol. Syst. 13 (2005), 45-58. (2005) Zbl1073.92061DOI10.1142/S0218339005001392
  60. Zhao, C., Wang, M., Zhao, P., 10.1016/j.mcm.2004.07.019, Math. Comput. Modelling 42 (2005), 573-584. (2005) Zbl1088.92063MR2173475DOI10.1016/j.mcm.2004.07.019

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.