On the class number of the maximal real subfields of a family of cyclotomic fields

Mahesh Kumar Ram

Czechoslovak Mathematical Journal (2023)

  • Volume: 73, Issue: 3, page 937-940
  • ISSN: 0011-4642

Abstract

top
For any square-free positive integer m 10 ( mod 16 ) with m 26 , we prove that the class number of the real cyclotomic field ( ζ 4 m + ζ 4 m - 1 ) is greater than 1 , where ζ 4 m is a primitive 4 m th root of unity.

How to cite

top

Ram, Mahesh Kumar. "On the class number of the maximal real subfields of a family of cyclotomic fields." Czechoslovak Mathematical Journal 73.3 (2023): 937-940. <http://eudml.org/doc/299123>.

@article{Ram2023,
abstract = {For any square-free positive integer $m\equiv \{10\}\hspace\{4.44443pt\}(\@mod \; 16)$ with $m\ge 26$, we prove that the class number of the real cyclotomic field $\mathbb \{Q\}(\zeta _\{4m\}+\zeta _\{4m\}^\{-1\})$ is greater than $1$, where $\zeta _\{4m\}$ is a primitive $4m$th root of unity.},
author = {Ram, Mahesh Kumar},
journal = {Czechoslovak Mathematical Journal},
keywords = {maximal real subfield of cyclotomic field; real quadratic field; class number},
language = {eng},
number = {3},
pages = {937-940},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On the class number of the maximal real subfields of a family of cyclotomic fields},
url = {http://eudml.org/doc/299123},
volume = {73},
year = {2023},
}

TY - JOUR
AU - Ram, Mahesh Kumar
TI - On the class number of the maximal real subfields of a family of cyclotomic fields
JO - Czechoslovak Mathematical Journal
PY - 2023
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 73
IS - 3
SP - 937
EP - 940
AB - For any square-free positive integer $m\equiv {10}\hspace{4.44443pt}(\@mod \; 16)$ with $m\ge 26$, we prove that the class number of the real cyclotomic field $\mathbb {Q}(\zeta _{4m}+\zeta _{4m}^{-1})$ is greater than $1$, where $\zeta _{4m}$ is a primitive $4m$th root of unity.
LA - eng
KW - maximal real subfield of cyclotomic field; real quadratic field; class number
UR - http://eudml.org/doc/299123
ER -

References

top
  1. Ankeny, N. C., Chowla, S., Hasse, H., 10.1515/crll.1965.217.217, J. Reine Angew. Math. 217 (1965), 217-220. (1965) Zbl0128.03501MR172861DOI10.1515/crll.1965.217.217
  2. Gica, A., 10.1216/rmjm/1181069349, Rocky Mt. J. Math. 36 (2006), 1867-1871. (2006) Zbl1139.11004MR2305634DOI10.1216/rmjm/1181069349
  3. Hasse, H., Über mehrklassige, aber eingeschlechtige reell-quadratische Zahlkörper, Elem. Math. 20 (1965), 49-59 German. (1965) Zbl0128.03502MR191889
  4. Hoque, A., Chakraborty, K., 10.1007/s11139-017-9963-9, Ramanujan J. 46 (2018), 727-742. (2018) Zbl1422.11065MR3826752DOI10.1007/s11139-017-9963-9
  5. Hoque, A., Saikia, H. K., 10.2989/16073606.2016.1188864, Quaest. Math. 39 (2016), 889-894. (2016) Zbl1423.11190MR3573387DOI10.2989/16073606.2016.1188864
  6. Lang, S.-D., 10.1515/crll.1977.290.70, J. Reine Angew. Math. 290 (1977), 70-72. (1977) Zbl0346.12003MR447177DOI10.1515/crll.1977.290.70
  7. Osada, H., 10.1007/BF01169091, Manuscr. Math. 58 (1987), 215-227. (1987) Zbl0602.12002MR884993DOI10.1007/BF01169091
  8. Takeuchi, H., 10.4153/CJM-1981-006-8, Can. J. Math. 33 (1981), 55-58. (1981) Zbl0482.12004MR608854DOI10.4153/CJM-1981-006-8
  9. Yamaguchi, I., 10.1515/crll.1975.272.217, J. Reine Angew. Math. 272 (1975), 217-220. (1975) Zbl0313.12003MR366874DOI10.1515/crll.1975.272.217

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.