On the class number of the maximal real subfields of a family of cyclotomic fields
Czechoslovak Mathematical Journal (2023)
- Volume: 73, Issue: 3, page 937-940
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topRam, Mahesh Kumar. "On the class number of the maximal real subfields of a family of cyclotomic fields." Czechoslovak Mathematical Journal 73.3 (2023): 937-940. <http://eudml.org/doc/299123>.
@article{Ram2023,
abstract = {For any square-free positive integer $m\equiv \{10\}\hspace\{4.44443pt\}(\@mod \; 16)$ with $m\ge 26$, we prove that the class number of the real cyclotomic field $\mathbb \{Q\}(\zeta _\{4m\}+\zeta _\{4m\}^\{-1\})$ is greater than $1$, where $\zeta _\{4m\}$ is a primitive $4m$th root of unity.},
author = {Ram, Mahesh Kumar},
journal = {Czechoslovak Mathematical Journal},
keywords = {maximal real subfield of cyclotomic field; real quadratic field; class number},
language = {eng},
number = {3},
pages = {937-940},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On the class number of the maximal real subfields of a family of cyclotomic fields},
url = {http://eudml.org/doc/299123},
volume = {73},
year = {2023},
}
TY - JOUR
AU - Ram, Mahesh Kumar
TI - On the class number of the maximal real subfields of a family of cyclotomic fields
JO - Czechoslovak Mathematical Journal
PY - 2023
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 73
IS - 3
SP - 937
EP - 940
AB - For any square-free positive integer $m\equiv {10}\hspace{4.44443pt}(\@mod \; 16)$ with $m\ge 26$, we prove that the class number of the real cyclotomic field $\mathbb {Q}(\zeta _{4m}+\zeta _{4m}^{-1})$ is greater than $1$, where $\zeta _{4m}$ is a primitive $4m$th root of unity.
LA - eng
KW - maximal real subfield of cyclotomic field; real quadratic field; class number
UR - http://eudml.org/doc/299123
ER -
References
top- Ankeny, N. C., Chowla, S., Hasse, H., 10.1515/crll.1965.217.217, J. Reine Angew. Math. 217 (1965), 217-220. (1965) Zbl0128.03501MR172861DOI10.1515/crll.1965.217.217
- Gica, A., 10.1216/rmjm/1181069349, Rocky Mt. J. Math. 36 (2006), 1867-1871. (2006) Zbl1139.11004MR2305634DOI10.1216/rmjm/1181069349
- Hasse, H., Über mehrklassige, aber eingeschlechtige reell-quadratische Zahlkörper, Elem. Math. 20 (1965), 49-59 German. (1965) Zbl0128.03502MR191889
- Hoque, A., Chakraborty, K., 10.1007/s11139-017-9963-9, Ramanujan J. 46 (2018), 727-742. (2018) Zbl1422.11065MR3826752DOI10.1007/s11139-017-9963-9
- Hoque, A., Saikia, H. K., 10.2989/16073606.2016.1188864, Quaest. Math. 39 (2016), 889-894. (2016) Zbl1423.11190MR3573387DOI10.2989/16073606.2016.1188864
- Lang, S.-D., 10.1515/crll.1977.290.70, J. Reine Angew. Math. 290 (1977), 70-72. (1977) Zbl0346.12003MR447177DOI10.1515/crll.1977.290.70
- Osada, H., 10.1007/BF01169091, Manuscr. Math. 58 (1987), 215-227. (1987) Zbl0602.12002MR884993DOI10.1007/BF01169091
- Takeuchi, H., 10.4153/CJM-1981-006-8, Can. J. Math. 33 (1981), 55-58. (1981) Zbl0482.12004MR608854DOI10.4153/CJM-1981-006-8
- Yamaguchi, I., 10.1515/crll.1975.272.217, J. Reine Angew. Math. 272 (1975), 217-220. (1975) Zbl0313.12003MR366874DOI10.1515/crll.1975.272.217
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.