Displaying similar documents to “On the class number of the maximal real subfields of a family of cyclotomic fields”

Mean values related to the Dedekind zeta-function

Hengcai Tang, Youjun Wang (2024)

Czechoslovak Mathematical Journal

Similarity:

Let K / be a nonnormal cubic extension which is given by an irreducible polynomial g ( x ) = x 3 + a x 2 + b x + c . Denote by ζ K ( s ) the Dedekind zeta-function of the field K and a K ( n ) the number of integral ideals in K with norm n . In this note, by the higher integral mean values and subconvexity bound of automorphic L -functions, the second and third moment of a K ( n ) is considered, i.e., n x a K 2 ( n ) = x P 1 ( log x ) + O ( x 5 / 7 + ϵ ) , n x a K 3 ( n ) = x P 4 ( log x ) + O ( X 321 / 356 + ϵ ) , where P 1 ( t ) , P 4 ( t ) are polynomials of degree 1, 4, respectively, ϵ > 0 is an arbitrarily small number.

On the 2 -class group of some number fields with large degree

Mohamed Mahmoud Chems-Eddin, Abdelmalek Azizi, Abdelkader Zekhnini (2021)

Archivum Mathematicum

Similarity:

Let d be an odd square-free integer, m 3 any integer and L m , d : = ( ζ 2 m , d ) . In this paper, we shall determine all the fields L m , d having an odd class number. Furthermore, using the cyclotomic 2 -extensions of some number fields, we compute the rank of the 2 -class group of L m , d whenever the prime divisors of d are congruent to 3 or 5 ( mod 8 ) .

A twisted class number formula and Gross's special units over an imaginary quadratic field

Saad El Boukhari (2023)

Czechoslovak Mathematical Journal

Similarity:

Let F / k be a finite abelian extension of number fields with k imaginary quadratic. Let O F be the ring of integers of F and n 2 a rational integer. We construct a submodule in the higher odd-degree algebraic K -groups of O F using corresponding Gross’s special elements. We show that this submodule is of finite index and prove that this index can be computed using the higher “twisted” class number of F , which is the cardinal of the finite algebraic K -group K 2 n - 2 ( O F ) .

Lower bound for class numbers of certain real quadratic fields

Mohit Mishra (2023)

Czechoslovak Mathematical Journal

Similarity:

Let d be a square-free positive integer and h ( d ) be the class number of the real quadratic field ( d ) . We give an explicit lower bound for h ( n 2 + r ) , where r = 1 , 4 . Ankeny and Chowla proved that if g > 1 is a natural number and d = n 2 g + 1 is a square-free integer, then g h ( d ) whenever n > 4 . Applying our lower bounds, we show that there does not exist any natural number n > 1 such that h ( n 2 g + 1 ) = g . We also obtain a similar result for the family ( n 2 g + 4 ) . As another application, we deduce some criteria for a class group of prime power order to be...

On the distribution of consecutive square-free primitive roots modulo p

Huaning Liu, Hui Dong (2015)

Czechoslovak Mathematical Journal

Similarity:

A positive integer n is called a square-free number if it is not divisible by a perfect square except 1 . Let p be an odd prime. For n with ( n , p ) = 1 , the smallest positive integer f such that n f 1 ( mod p ) is called the exponent of n modulo p . If the exponent of n modulo p is p - 1 , then n is called a primitive root mod p . Let A ( n ) be the characteristic function of the square-free primitive roots modulo p . In this paper we study the distribution n x A ( n ) A ( n + 1 ) , and give an asymptotic formula by using properties of character...