On k -free numbers over Beatty sequences

Wei Zhang

Czechoslovak Mathematical Journal (2023)

  • Volume: 73, Issue: 3, page 839-847
  • ISSN: 0011-4642

Abstract

top
We consider k -free numbers over Beatty sequences. New results are given. In particular, for a fixed irrational number α > 1 of finite type τ < and any constant ε > 0 , we can show that 1 n x [ α n + β ] 𝒬 k 1 - x ζ ( k ) x k / ( 2 k - 1 ) + ε + x 1 - 1 / ( τ + 1 ) + ε , where 𝒬 k is the set of positive k -free integers and the implied constant depends only on α , ε , k and β . This improves previous results. The main new ingredient of our idea is employing double exponential sums of the type 1 h H 1 n x n 𝒬 k e ( ϑ h n ) .

How to cite

top

Zhang, Wei. "On $k$-free numbers over Beatty sequences." Czechoslovak Mathematical Journal 73.3 (2023): 839-847. <http://eudml.org/doc/299124>.

@article{Zhang2023,
abstract = {We consider $k$-free numbers over Beatty sequences. New results are given. In particular, for a fixed irrational number $\alpha >1$ of finite type $\tau <\infty $ and any constant $\varepsilon >0$, we can show that \[ \sum \_\{ 1\le n\le x \atop [\alpha n+\beta ]\in \mathcal \{Q\}\_\{k\}\} 1- \frac\{x\}\{ \zeta (k)\} \ll x^\{k/(2k-1)+\varepsilon \}+x^\{1-1/(\tau +1)+\varepsilon \}, \] where $\mathcal \{Q\}_\{k\}$ is the set of positive $k$-free integers and the implied constant depends only on $\alpha ,$$\varepsilon ,$$k$ and $\beta .$ This improves previous results. The main new ingredient of our idea is employing double exponential sums of the type \[ \sum \_\{1\le h\le H\}\sum \_\{ 1\le n\le x \atop n\in \mathcal \{Q\}\_\{k\}\}e(\vartheta hn). \]},
author = {Zhang, Wei},
journal = {Czechoslovak Mathematical Journal},
keywords = {$k$-free number; exponential sum; Beatty sequence},
language = {eng},
number = {3},
pages = {839-847},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On $k$-free numbers over Beatty sequences},
url = {http://eudml.org/doc/299124},
volume = {73},
year = {2023},
}

TY - JOUR
AU - Zhang, Wei
TI - On $k$-free numbers over Beatty sequences
JO - Czechoslovak Mathematical Journal
PY - 2023
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 73
IS - 3
SP - 839
EP - 847
AB - We consider $k$-free numbers over Beatty sequences. New results are given. In particular, for a fixed irrational number $\alpha >1$ of finite type $\tau <\infty $ and any constant $\varepsilon >0$, we can show that \[ \sum _{ 1\le n\le x \atop [\alpha n+\beta ]\in \mathcal {Q}_{k}} 1- \frac{x}{ \zeta (k)} \ll x^{k/(2k-1)+\varepsilon }+x^{1-1/(\tau +1)+\varepsilon }, \] where $\mathcal {Q}_{k}$ is the set of positive $k$-free integers and the implied constant depends only on $\alpha ,$$\varepsilon ,$$k$ and $\beta .$ This improves previous results. The main new ingredient of our idea is employing double exponential sums of the type \[ \sum _{1\le h\le H}\sum _{ 1\le n\le x \atop n\in \mathcal {Q}_{k}}e(\vartheta hn). \]
LA - eng
KW - $k$-free number; exponential sum; Beatty sequence
UR - http://eudml.org/doc/299124
ER -

References

top
  1. Abercrombie, A. G., Banks, W. D., Shparlinski, I. E., 10.4064/aa136-1-6, Acta Arith. 136 (2009), 81-89. (2009) Zbl1227.11045MR2469945DOI10.4064/aa136-1-6
  2. Banks, W. D., Shparlinski, I. E., 10.4310/MRL.2006.v13.n4.a4, Math. Res. Lett. 13 (2006), 539-547. (2006) Zbl1220.11097MR2250489DOI10.4310/MRL.2006.v13.n4.a4
  3. Banks, W. D., Yeager, A. M., 10.4064/cm125-1-9, Colloq. Math. 125 (2011), 129-137. (2011) Zbl1276.11151MR2860586DOI10.4064/cm125-1-9
  4. Brüdern, J., Perelli, A., Exponential sums and additive problems involving square-free numbers, Ann. Sc. Norm. Super. Pisa, Cl. Sci., IV. Ser. 28 (1999), 591-613. (1999) Zbl1019.11028MR1760532
  5. Dimitrov, S. I., On the distribution of consecutive square-free numbers of the form α n , α n + 1 , Proc. Jangjeon Math. Soc. 22 (2019), 463-470. (2019) Zbl1428.11163MR3994243
  6. Goryashin, D. V., 10.22405/2226-8383-2017-18-4-97-105, Chebyshevskii Sb. 14 (2013), 42-48 Russian. (2013) Zbl1430.11130DOI10.22405/2226-8383-2017-18-4-97-105
  7. Güloğlu, A. M., Nevans, C. W., 10.1017/S0004972708000853, Bull. Aust. Math. Soc. 78 (2008), 327-334. (2008) Zbl1228.11151MR2466868DOI10.1017/S0004972708000853
  8. Iwaniec, H., Kowalski, E., 10.1090/coll/053, American Mathematical Society Colloquium Publications 53. AMS, Providence (2004). (2004) Zbl1059.11001MR2061214DOI10.1090/coll/053
  9. Kim, V., Srichan, T., Mavecha, S., 10.1007/s40590-022-00422-x, Bol. Soc. Mat. Mex., III. Ser. 28 (2022), Article ID 28, 10 pages. (2022) Zbl07493131MR4395131DOI10.1007/s40590-022-00422-x
  10. Kuipers, L., Niederreiter, H., Uniform Distribution of Sequences, Pure and Applied Mathematics. John Wiley & Sons, New York (1974). (1974) Zbl0281.10001MR0419394
  11. Technau, M., Zafeiropoulos, A., 10.4064/aa200128-10-6, Acta Arith. 197 (2021), 93-104. (2021) Zbl1465.11077MR4185917DOI10.4064/aa200128-10-6
  12. Tolev, D. I., 10.1112/S0024609305004753, Bull. Lond. Math. Soc. 37 (2005), 827-834. (2005) Zbl1099.11042MR2186715DOI10.1112/S0024609305004753
  13. Vinogradov, I. M., The Method of Trigonometrical Sums in the Theory of Numbers, Dover, Mineola (2004). (2004) Zbl1093.11001MR2104806

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.