On -free numbers over Beatty sequences
Czechoslovak Mathematical Journal (2023)
- Volume: 73, Issue: 3, page 839-847
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topZhang, Wei. "On $k$-free numbers over Beatty sequences." Czechoslovak Mathematical Journal 73.3 (2023): 839-847. <http://eudml.org/doc/299124>.
@article{Zhang2023,
abstract = {We consider $k$-free numbers over Beatty sequences. New results are given. In particular, for a fixed irrational number $\alpha >1$ of finite type $\tau <\infty $ and any constant $\varepsilon >0$, we can show that \[ \sum \_\{ 1\le n\le x \atop [\alpha n+\beta ]\in \mathcal \{Q\}\_\{k\}\} 1- \frac\{x\}\{ \zeta (k)\} \ll x^\{k/(2k-1)+\varepsilon \}+x^\{1-1/(\tau +1)+\varepsilon \}, \]
where $\mathcal \{Q\}_\{k\}$ is the set of positive $k$-free integers and the implied constant depends only on $\alpha ,$$\varepsilon ,$$k$ and $\beta .$ This improves previous results. The main new ingredient of our idea is employing double exponential sums of the type \[ \sum \_\{1\le h\le H\}\sum \_\{ 1\le n\le x \atop n\in \mathcal \{Q\}\_\{k\}\}e(\vartheta hn). \]},
author = {Zhang, Wei},
journal = {Czechoslovak Mathematical Journal},
keywords = {$k$-free number; exponential sum; Beatty sequence},
language = {eng},
number = {3},
pages = {839-847},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On $k$-free numbers over Beatty sequences},
url = {http://eudml.org/doc/299124},
volume = {73},
year = {2023},
}
TY - JOUR
AU - Zhang, Wei
TI - On $k$-free numbers over Beatty sequences
JO - Czechoslovak Mathematical Journal
PY - 2023
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 73
IS - 3
SP - 839
EP - 847
AB - We consider $k$-free numbers over Beatty sequences. New results are given. In particular, for a fixed irrational number $\alpha >1$ of finite type $\tau <\infty $ and any constant $\varepsilon >0$, we can show that \[ \sum _{ 1\le n\le x \atop [\alpha n+\beta ]\in \mathcal {Q}_{k}} 1- \frac{x}{ \zeta (k)} \ll x^{k/(2k-1)+\varepsilon }+x^{1-1/(\tau +1)+\varepsilon }, \]
where $\mathcal {Q}_{k}$ is the set of positive $k$-free integers and the implied constant depends only on $\alpha ,$$\varepsilon ,$$k$ and $\beta .$ This improves previous results. The main new ingredient of our idea is employing double exponential sums of the type \[ \sum _{1\le h\le H}\sum _{ 1\le n\le x \atop n\in \mathcal {Q}_{k}}e(\vartheta hn). \]
LA - eng
KW - $k$-free number; exponential sum; Beatty sequence
UR - http://eudml.org/doc/299124
ER -
References
top- Abercrombie, A. G., Banks, W. D., Shparlinski, I. E., 10.4064/aa136-1-6, Acta Arith. 136 (2009), 81-89. (2009) Zbl1227.11045MR2469945DOI10.4064/aa136-1-6
- Banks, W. D., Shparlinski, I. E., 10.4310/MRL.2006.v13.n4.a4, Math. Res. Lett. 13 (2006), 539-547. (2006) Zbl1220.11097MR2250489DOI10.4310/MRL.2006.v13.n4.a4
- Banks, W. D., Yeager, A. M., 10.4064/cm125-1-9, Colloq. Math. 125 (2011), 129-137. (2011) Zbl1276.11151MR2860586DOI10.4064/cm125-1-9
- Brüdern, J., Perelli, A., Exponential sums and additive problems involving square-free numbers, Ann. Sc. Norm. Super. Pisa, Cl. Sci., IV. Ser. 28 (1999), 591-613. (1999) Zbl1019.11028MR1760532
- Dimitrov, S. I., On the distribution of consecutive square-free numbers of the form , Proc. Jangjeon Math. Soc. 22 (2019), 463-470. (2019) Zbl1428.11163MR3994243
- Goryashin, D. V., 10.22405/2226-8383-2017-18-4-97-105, Chebyshevskii Sb. 14 (2013), 42-48 Russian. (2013) Zbl1430.11130DOI10.22405/2226-8383-2017-18-4-97-105
- Güloğlu, A. M., Nevans, C. W., 10.1017/S0004972708000853, Bull. Aust. Math. Soc. 78 (2008), 327-334. (2008) Zbl1228.11151MR2466868DOI10.1017/S0004972708000853
- Iwaniec, H., Kowalski, E., 10.1090/coll/053, American Mathematical Society Colloquium Publications 53. AMS, Providence (2004). (2004) Zbl1059.11001MR2061214DOI10.1090/coll/053
- Kim, V., Srichan, T., Mavecha, S., 10.1007/s40590-022-00422-x, Bol. Soc. Mat. Mex., III. Ser. 28 (2022), Article ID 28, 10 pages. (2022) Zbl07493131MR4395131DOI10.1007/s40590-022-00422-x
- Kuipers, L., Niederreiter, H., Uniform Distribution of Sequences, Pure and Applied Mathematics. John Wiley & Sons, New York (1974). (1974) Zbl0281.10001MR0419394
- Technau, M., Zafeiropoulos, A., 10.4064/aa200128-10-6, Acta Arith. 197 (2021), 93-104. (2021) Zbl1465.11077MR4185917DOI10.4064/aa200128-10-6
- Tolev, D. I., 10.1112/S0024609305004753, Bull. Lond. Math. Soc. 37 (2005), 827-834. (2005) Zbl1099.11042MR2186715DOI10.1112/S0024609305004753
- Vinogradov, I. M., The Method of Trigonometrical Sums in the Theory of Numbers, Dover, Mineola (2004). (2004) Zbl1093.11001MR2104806
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.