Exponential sums and additive problems involving square-free numbers

Jörg Brüdern; Alberto Perelli

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (1999)

  • Volume: 28, Issue: 4, page 591-613
  • ISSN: 0391-173X

How to cite

top

Brüdern, Jörg, and Perelli, Alberto. "Exponential sums and additive problems involving square-free numbers." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 28.4 (1999): 591-613. <http://eudml.org/doc/84389>.

@article{Brüdern1999,
author = {Brüdern, Jörg, Perelli, Alberto},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
keywords = {square-free numbers; sums of square-free numbers; exponential sums; asymptotic formulae; error terms},
language = {eng},
number = {4},
pages = {591-613},
publisher = {Scuola normale superiore},
title = {Exponential sums and additive problems involving square-free numbers},
url = {http://eudml.org/doc/84389},
volume = {28},
year = {1999},
}

TY - JOUR
AU - Brüdern, Jörg
AU - Perelli, Alberto
TI - Exponential sums and additive problems involving square-free numbers
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 1999
PB - Scuola normale superiore
VL - 28
IS - 4
SP - 591
EP - 613
LA - eng
KW - square-free numbers; sums of square-free numbers; exponential sums; asymptotic formulae; error terms
UR - http://eudml.org/doc/84389
ER -

References

top
  1. [1] R.C. Baker, "Diophantine Inequalities", Oxford, Clarendon Press, 1986. Zbl0592.10029MR865981
  2. [2] R.C. Baker - J. Brüdern - G. Harman, Simultaneous diophantine approximation with square-free numbers, Acta Arith.63 (1993), 52-60. Zbl0771.11028MR1201618
  3. [3] J. Brüdern - A. Granville - A. Perelli - R.C. Vaughan - T.D. Wooley, On the exponential sum over k-free numbers, Philos. Trans. Roy. Soc. London Ser. A356 (1998), 739-761. Zbl0922.11071MR1620828
  4. [4] T. Estermann, On the representations of a number as the sum of two numbers not divisible by kth powers, J. London Math. Soc.6 (1931), 37-40. Zbl0001.12702JFM57.0222.03
  5. [5] C.J.A. Evelyn - E.H. Linfoot, On a problem in the additive theory of numbers, I: Math. Z.30 (1929), 433-448; II: J. Reine Angew. Math.164 (1931), 131-140; III: Math. Z.34 (1932), 637-644; IV: Ann. of Math.32 (1931), 261-270; V: Quart. J. Math.3 (1932), 152-160; VI: Quart. J. Math.4 (1933), 309-314. Zbl55.0703.01MR1545072
  6. [6] J.B. Friedlander - D.A. Goldston, Sums of three or more primes, Trans. Amer. Math. Soc.349 (1997), 287-310. Zbl1036.11506MR1357393
  7. [7] G.H. Hardy - J.E. Littlewood, Some problems of "partitio numerorum", III: On the expression of a number as a sum of primes, Acta Math.44 (1923), 1-70. Zbl48.0143.04JFM48.0143.04
  8. [8] G. Harman, Trigonometric sums over primes, I, Mathematika28 (1981), 249-254. Zbl0465.10029MR645105
  9. [9] D.R. Heath-Brown, The square sieve and consecutive square-free numbers, Math. Ann.226 (1984), 251-259. Zbl0514.10038MR730168
  10. [10] A. Languasco - A. Perelli, On Linnik's theorem on Goldbach numbers in short intervals and related problems, Ann. Inst. Fourier (Grenoble) 44 (1994), 307-322. Zbl0799.11040MR1296733
  11. [11] J.V. Linnik, A new proof of the Goldbach-Vinogradov theorem (Russian), Mat. Sbornik19 (1946), 3-8. Zbl0063.03589MR18693
  12. [12] L. Mirsky, On a theorem in the additive theory of numbers due to Evelyn and Linfoot, Math. Proc. Cambridge Phil. Soc.44 (1948), 305-312. Zbl0039.03604MR26087
  13. [13] H.L. Montgomery - R.C. Vaughan, Error terms in additive prime number theory, Quart. J. Math. Oxford (2) 24 (1973), 207-216. Zbl0257.10027MR337855
  14. [14] R. Warlimont, On square-free numbers in arithmetic progressions, Monatsh. Math.73 (1969), 433-448. Zbl0213.33002

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.