On the -free values of the polynomial
Czechoslovak Mathematical Journal (2023)
- Volume: 73, Issue: 3, page 955-969
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topChen, Gongrui, and Wang, Wenxiao. "On the $r$-free values of the polynomial $x^2 + y^2 + z^2 +k$." Czechoslovak Mathematical Journal 73.3 (2023): 955-969. <http://eudml.org/doc/299125>.
@article{Chen2023,
abstract = {Let $k$ be a fixed integer. We study the asymptotic formula of $R(H,r,k)$, which is the number of positive integer solutions $1\le x, y,z\le H$ such that the polynomial $x^2+y^2+z^2+k$ is $r$-free. We obtained the asymptotic formula of $R(H,r,k)$ for all $r\ge 2$. Our result is new even in the case $r=2$. We proved that $R(H,2,k)= c_kH^3 +O(H^\{9/4+\varepsilon \})$, where $c_k>0$ is a constant depending on $k$. This improves upon the error term $O(H^\{7/3+\varepsilon \})$ obtained by G.-L. Zhou, Y. Ding (2022).},
author = {Chen, Gongrui, Wang, Wenxiao},
journal = {Czechoslovak Mathematical Journal},
keywords = {square-free; Salié sum; asymptotic formula},
language = {eng},
number = {3},
pages = {955-969},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On the $r$-free values of the polynomial $x^2 + y^2 + z^2 +k$},
url = {http://eudml.org/doc/299125},
volume = {73},
year = {2023},
}
TY - JOUR
AU - Chen, Gongrui
AU - Wang, Wenxiao
TI - On the $r$-free values of the polynomial $x^2 + y^2 + z^2 +k$
JO - Czechoslovak Mathematical Journal
PY - 2023
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 73
IS - 3
SP - 955
EP - 969
AB - Let $k$ be a fixed integer. We study the asymptotic formula of $R(H,r,k)$, which is the number of positive integer solutions $1\le x, y,z\le H$ such that the polynomial $x^2+y^2+z^2+k$ is $r$-free. We obtained the asymptotic formula of $R(H,r,k)$ for all $r\ge 2$. Our result is new even in the case $r=2$. We proved that $R(H,2,k)= c_kH^3 +O(H^{9/4+\varepsilon })$, where $c_k>0$ is a constant depending on $k$. This improves upon the error term $O(H^{7/3+\varepsilon })$ obtained by G.-L. Zhou, Y. Ding (2022).
LA - eng
KW - square-free; Salié sum; asymptotic formula
UR - http://eudml.org/doc/299125
ER -
References
top- Brandes, J., Twins of the -Free Numbers: Diploma Thesis, University of Stuttgart, Stuttgart (2009). (2009)
- Carlitz, L., 10.1093/qmath/os-3.1.273, Q. J. Math., Oxf. Ser. 3 (1932), 273-290. (1932) Zbl0006.10401DOI10.1093/qmath/os-3.1.273
- Chen, B., 10.1007/s13226-022-00292-z, (to appear) in Indian J. Pure Appl. Math. MR1398080DOI10.1007/s13226-022-00292-z
- Dimitrov, S., 10.4064/aa190118-25-7, Acta Arith. 194 (2020), 281-294. (2020) Zbl1469.11263MR4096105DOI10.4064/aa190118-25-7
- Dimitrov, S., 10.21136/CMJ.2021.0165-20, Czech. Math. J. 71 (2021), 991-1009. (2021) Zbl07442468MR4339105DOI10.21136/CMJ.2021.0165-20
- Estermann, T., 10.1007/BF01455836, Math. Ann. 105 (1931), 653-662 German. (1931) Zbl0003.15001MR1512732DOI10.1007/BF01455836
- Estermann, T., 10.1112/plms/s3-12.1.425, Proc. Lond. Math. Soc., III. Ser. 12 (1962), 425-444. (1962) Zbl0105.03606MR0137677DOI10.1112/plms/s3-12.1.425
- Heath-Brown, D. R., 10.1007/BF01475576, Math. Ann. 266 (1984), 251-259. (1984) Zbl0514.10038MR0730168DOI10.1007/BF01475576
- Heath-Brown, D. R., 10.4064/aa155-1-1, Acta Arith. 155 (2012), 1-13. (2012) Zbl1312.11077MR2982423DOI10.4064/aa155-1-1
- Iwaniec, H., 10.1007/bf01578070, Invent. Math. 47 (1978), 171-188. (1978) Zbl0389.10031MR0485740DOI10.1007/bf01578070
- Iwaniec, H., 10.1090/gsm/017, Graduate Studies in Mathematics 17. AMS, Providence (1997). (1997) Zbl0905.11023MR1474964DOI10.1090/gsm/017
- Jing, M., Liu, H., 10.1142/S1793042122500154, Int. J. Number Theory 18 (2022), 205-226. (2022) Zbl1489.11005MR4369801DOI10.1142/S1793042122500154
- Mirsky, L., 10.1093/qmath/os-18.1.178, Q. J. Math., Oxf. Ser. 18 (1947), 178-182. (1947) Zbl0029.10905MR0021566DOI10.1093/qmath/os-18.1.178
- Mirsky, L., 10.1090/S0002-9904-1949-09313-8, Bull. Am. Math. Soc. 55 (1949), 936-939. (1949) Zbl0035.31301MR0031507DOI10.1090/S0002-9904-1949-09313-8
- Nathanson, M. B., 10.1007/978-1-4757-3845-2, Graduate Texts in Mathematics 164. Springer, New York (1996). (1996) Zbl0859.11002MR1395371DOI10.1007/978-1-4757-3845-2
- Reuss, T., The Determinant Method and Applications: Ph.D. Thesis, University of Oxford, Oxford (2015). (2015)
- Tolev, D. I., 10.1007/s00605-010-0246-4, Monatsh. Math. 165 (2012), 557-567. (2012) Zbl1297.11118MR2891268DOI10.1007/s00605-010-0246-4
- Zhou, G.-L., Ding, Y., 10.1016/j.jnt.2021.07.022, J. Number Theory 236 (2022), 308-322. (2022) Zbl1490.11096MR4395352DOI10.1016/j.jnt.2021.07.022
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.