On the r -free values of the polynomial x 2 + y 2 + z 2 + k

Gongrui Chen; Wenxiao Wang

Czechoslovak Mathematical Journal (2023)

  • Volume: 73, Issue: 3, page 955-969
  • ISSN: 0011-4642

Abstract

top
Let k be a fixed integer. We study the asymptotic formula of R ( H , r , k ) , which is the number of positive integer solutions 1 x , y , z H such that the polynomial x 2 + y 2 + z 2 + k is r -free. We obtained the asymptotic formula of R ( H , r , k ) for all r 2 . Our result is new even in the case r = 2 . We proved that R ( H , 2 , k ) = c k H 3 + O ( H 9 / 4 + ε ) , where c k > 0 is a constant depending on k . This improves upon the error term O ( H 7 / 3 + ε ) obtained by G.-L. Zhou, Y. Ding (2022).

How to cite

top

Chen, Gongrui, and Wang, Wenxiao. "On the $r$-free values of the polynomial $x^2 + y^2 + z^2 +k$." Czechoslovak Mathematical Journal 73.3 (2023): 955-969. <http://eudml.org/doc/299125>.

@article{Chen2023,
abstract = {Let $k$ be a fixed integer. We study the asymptotic formula of $R(H,r,k)$, which is the number of positive integer solutions $1\le x, y,z\le H$ such that the polynomial $x^2+y^2+z^2+k$ is $r$-free. We obtained the asymptotic formula of $R(H,r,k)$ for all $r\ge 2$. Our result is new even in the case $r=2$. We proved that $R(H,2,k)= c_kH^3 +O(H^\{9/4+\varepsilon \})$, where $c_k>0$ is a constant depending on $k$. This improves upon the error term $O(H^\{7/3+\varepsilon \})$ obtained by G.-L. Zhou, Y. Ding (2022).},
author = {Chen, Gongrui, Wang, Wenxiao},
journal = {Czechoslovak Mathematical Journal},
keywords = {square-free; Salié sum; asymptotic formula},
language = {eng},
number = {3},
pages = {955-969},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On the $r$-free values of the polynomial $x^2 + y^2 + z^2 +k$},
url = {http://eudml.org/doc/299125},
volume = {73},
year = {2023},
}

TY - JOUR
AU - Chen, Gongrui
AU - Wang, Wenxiao
TI - On the $r$-free values of the polynomial $x^2 + y^2 + z^2 +k$
JO - Czechoslovak Mathematical Journal
PY - 2023
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 73
IS - 3
SP - 955
EP - 969
AB - Let $k$ be a fixed integer. We study the asymptotic formula of $R(H,r,k)$, which is the number of positive integer solutions $1\le x, y,z\le H$ such that the polynomial $x^2+y^2+z^2+k$ is $r$-free. We obtained the asymptotic formula of $R(H,r,k)$ for all $r\ge 2$. Our result is new even in the case $r=2$. We proved that $R(H,2,k)= c_kH^3 +O(H^{9/4+\varepsilon })$, where $c_k>0$ is a constant depending on $k$. This improves upon the error term $O(H^{7/3+\varepsilon })$ obtained by G.-L. Zhou, Y. Ding (2022).
LA - eng
KW - square-free; Salié sum; asymptotic formula
UR - http://eudml.org/doc/299125
ER -

References

top
  1. Brandes, J., Twins of the s -Free Numbers: Diploma Thesis, University of Stuttgart, Stuttgart (2009). (2009) 
  2. Carlitz, L., 10.1093/qmath/os-3.1.273, Q. J. Math., Oxf. Ser. 3 (1932), 273-290. (1932) Zbl0006.10401DOI10.1093/qmath/os-3.1.273
  3. Chen, B., 10.1007/s13226-022-00292-z, (to appear) in Indian J. Pure Appl. Math. MR1398080DOI10.1007/s13226-022-00292-z
  4. Dimitrov, S., 10.4064/aa190118-25-7, Acta Arith. 194 (2020), 281-294. (2020) Zbl1469.11263MR4096105DOI10.4064/aa190118-25-7
  5. Dimitrov, S., 10.21136/CMJ.2021.0165-20, Czech. Math. J. 71 (2021), 991-1009. (2021) Zbl07442468MR4339105DOI10.21136/CMJ.2021.0165-20
  6. Estermann, T., 10.1007/BF01455836, Math. Ann. 105 (1931), 653-662 German. (1931) Zbl0003.15001MR1512732DOI10.1007/BF01455836
  7. Estermann, T., 10.1112/plms/s3-12.1.425, Proc. Lond. Math. Soc., III. Ser. 12 (1962), 425-444. (1962) Zbl0105.03606MR0137677DOI10.1112/plms/s3-12.1.425
  8. Heath-Brown, D. R., 10.1007/BF01475576, Math. Ann. 266 (1984), 251-259. (1984) Zbl0514.10038MR0730168DOI10.1007/BF01475576
  9. Heath-Brown, D. R., 10.4064/aa155-1-1, Acta Arith. 155 (2012), 1-13. (2012) Zbl1312.11077MR2982423DOI10.4064/aa155-1-1
  10. Iwaniec, H., 10.1007/bf01578070, Invent. Math. 47 (1978), 171-188. (1978) Zbl0389.10031MR0485740DOI10.1007/bf01578070
  11. Iwaniec, H., 10.1090/gsm/017, Graduate Studies in Mathematics 17. AMS, Providence (1997). (1997) Zbl0905.11023MR1474964DOI10.1090/gsm/017
  12. Jing, M., Liu, H., 10.1142/S1793042122500154, Int. J. Number Theory 18 (2022), 205-226. (2022) Zbl1489.11005MR4369801DOI10.1142/S1793042122500154
  13. Mirsky, L., 10.1093/qmath/os-18.1.178, Q. J. Math., Oxf. Ser. 18 (1947), 178-182. (1947) Zbl0029.10905MR0021566DOI10.1093/qmath/os-18.1.178
  14. Mirsky, L., 10.1090/S0002-9904-1949-09313-8, Bull. Am. Math. Soc. 55 (1949), 936-939. (1949) Zbl0035.31301MR0031507DOI10.1090/S0002-9904-1949-09313-8
  15. Nathanson, M. B., 10.1007/978-1-4757-3845-2, Graduate Texts in Mathematics 164. Springer, New York (1996). (1996) Zbl0859.11002MR1395371DOI10.1007/978-1-4757-3845-2
  16. Reuss, T., The Determinant Method and Applications: Ph.D. Thesis, University of Oxford, Oxford (2015). (2015) 
  17. Tolev, D. I., 10.1007/s00605-010-0246-4, Monatsh. Math. 165 (2012), 557-567. (2012) Zbl1297.11118MR2891268DOI10.1007/s00605-010-0246-4
  18. Zhou, G.-L., Ding, Y., 10.1016/j.jnt.2021.07.022, J. Number Theory 236 (2022), 308-322. (2022) Zbl1490.11096MR4395352DOI10.1016/j.jnt.2021.07.022

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.