Pairs of square-free values of the type ,
Czechoslovak Mathematical Journal (2021)
- Volume: 71, Issue: 4, page 991-1009
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topDimitrov, Stoyan. "Pairs of square-free values of the type $n^2+1$, $n^2+2$." Czechoslovak Mathematical Journal 71.4 (2021): 991-1009. <http://eudml.org/doc/298177>.
@article{Dimitrov2021,
abstract = {We show that there exist infinitely many consecutive square-free numbers of the form $n^2+1$, $n^2+2$. We also establish an asymptotic formula for the number of such square-free pairs when $n$ does not exceed given sufficiently large positive number.},
author = {Dimitrov, Stoyan},
journal = {Czechoslovak Mathematical Journal},
keywords = {square-free number; asymptotic formula; Kloosterman sum},
language = {eng},
number = {4},
pages = {991-1009},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Pairs of square-free values of the type $n^2+1$, $n^2+2$},
url = {http://eudml.org/doc/298177},
volume = {71},
year = {2021},
}
TY - JOUR
AU - Dimitrov, Stoyan
TI - Pairs of square-free values of the type $n^2+1$, $n^2+2$
JO - Czechoslovak Mathematical Journal
PY - 2021
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 71
IS - 4
SP - 991
EP - 1009
AB - We show that there exist infinitely many consecutive square-free numbers of the form $n^2+1$, $n^2+2$. We also establish an asymptotic formula for the number of such square-free pairs when $n$ does not exceed given sufficiently large positive number.
LA - eng
KW - square-free number; asymptotic formula; Kloosterman sum
UR - http://eudml.org/doc/298177
ER -
References
top- Carlitz, L., 10.1093/qmath/os-3.1.273, Q. J. Math., Oxf. Ser. 3 (1932), 273-290. (1932) Zbl0006.10401DOI10.1093/qmath/os-3.1.273
- Dimitrov, S. I., 10.17654/NT040060945, JP J. Algebra Number Theory Appl. 40 (2018), 945-956. (2018) Zbl1417.11145DOI10.17654/NT040060945
- Dimitrov, S. I., 10.17777/pjms2019.22.3.463, Proc. Jangjeon Math. Soc. 22 (2019), 463-470. (2019) Zbl1428.11163MR3994243DOI10.17777/pjms2019.22.3.463
- Dimitrov, S. I., Consecutive square-free values of the form , Proc. Jangjeon Math. Soc. 23 (2020), 519-524. (2020) MR4169549
- Dimitrov, S. I., 10.4064/aa190118-25-7, Acta Arith. 194 (2020), 281-294. (2020) Zbl07221818MR4096105DOI10.4064/aa190118-25-7
- Estermann, T., 10.1007/BF01455836, Math. Ann. 105 (1931), 653-662 German. (1931) Zbl0003.15001MR1512732DOI10.1007/BF01455836
- Heath-Brown, D. R., 10.1007/BF01475576, Math. Ann. 266 (1984), 251-259. (1984) Zbl0514.10038MR0730168DOI10.1007/BF01475576
- Heath-Brown, D. R., 10.4064/aa155-1-1, Acta Arith. 155 (2012), 1-13. (2012) Zbl1312.11077MR2982423DOI10.4064/aa155-1-1
- Iwaniec, H., Kowalski, E., 10.1090/coll/053, Colloquium Publications 53. American Mathematical Society (2004). (2004) Zbl1059.11001MR2061214DOI10.1090/coll/053
- Reuss, T., Pairs of -free numbers, consecutive square-full numbers, Available at https://arxiv.org/abs/1212.3150v2 (2014), 28 pages. (2014)
- Tolev, D. I., 10.1112/S0024609305004753, Bull. Lond. Math. Soc. 37 (2005), 827-834. (2005) Zbl1099.11042MR2186715DOI10.1112/S0024609305004753
- Tolev, D. I., Lectures on Elementary and Analytic Number Theory. II, St. Kliment Ohridski University Press, Sofia (2016), Bulgarian. (2016)
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.