Pairs of square-free values of the type n 2 + 1 , n 2 + 2

Stoyan Dimitrov

Czechoslovak Mathematical Journal (2021)

  • Volume: 71, Issue: 4, page 991-1009
  • ISSN: 0011-4642

Abstract

top
We show that there exist infinitely many consecutive square-free numbers of the form n 2 + 1 , n 2 + 2 . We also establish an asymptotic formula for the number of such square-free pairs when n does not exceed given sufficiently large positive number.

How to cite

top

Dimitrov, Stoyan. "Pairs of square-free values of the type $n^2+1$, $n^2+2$." Czechoslovak Mathematical Journal 71.4 (2021): 991-1009. <http://eudml.org/doc/298177>.

@article{Dimitrov2021,
abstract = {We show that there exist infinitely many consecutive square-free numbers of the form $n^2+1$, $n^2+2$. We also establish an asymptotic formula for the number of such square-free pairs when $n$ does not exceed given sufficiently large positive number.},
author = {Dimitrov, Stoyan},
journal = {Czechoslovak Mathematical Journal},
keywords = {square-free number; asymptotic formula; Kloosterman sum},
language = {eng},
number = {4},
pages = {991-1009},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Pairs of square-free values of the type $n^2+1$, $n^2+2$},
url = {http://eudml.org/doc/298177},
volume = {71},
year = {2021},
}

TY - JOUR
AU - Dimitrov, Stoyan
TI - Pairs of square-free values of the type $n^2+1$, $n^2+2$
JO - Czechoslovak Mathematical Journal
PY - 2021
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 71
IS - 4
SP - 991
EP - 1009
AB - We show that there exist infinitely many consecutive square-free numbers of the form $n^2+1$, $n^2+2$. We also establish an asymptotic formula for the number of such square-free pairs when $n$ does not exceed given sufficiently large positive number.
LA - eng
KW - square-free number; asymptotic formula; Kloosterman sum
UR - http://eudml.org/doc/298177
ER -

References

top
  1. Carlitz, L., 10.1093/qmath/os-3.1.273, Q. J. Math., Oxf. Ser. 3 (1932), 273-290. (1932) Zbl0006.10401DOI10.1093/qmath/os-3.1.273
  2. Dimitrov, S. I., 10.17654/NT040060945, JP J. Algebra Number Theory Appl. 40 (2018), 945-956. (2018) Zbl1417.11145DOI10.17654/NT040060945
  3. Dimitrov, S. I., 10.17777/pjms2019.22.3.463, Proc. Jangjeon Math. Soc. 22 (2019), 463-470. (2019) Zbl1428.11163MR3994243DOI10.17777/pjms2019.22.3.463
  4. Dimitrov, S. I., Consecutive square-free values of the form [ α p ] , [ α p ] + 1 , Proc. Jangjeon Math. Soc. 23 (2020), 519-524. (2020) MR4169549
  5. Dimitrov, S. I., 10.4064/aa190118-25-7, Acta Arith. 194 (2020), 281-294. (2020) Zbl07221818MR4096105DOI10.4064/aa190118-25-7
  6. Estermann, T., 10.1007/BF01455836, Math. Ann. 105 (1931), 653-662 German. (1931) Zbl0003.15001MR1512732DOI10.1007/BF01455836
  7. Heath-Brown, D. R., 10.1007/BF01475576, Math. Ann. 266 (1984), 251-259. (1984) Zbl0514.10038MR0730168DOI10.1007/BF01475576
  8. Heath-Brown, D. R., 10.4064/aa155-1-1, Acta Arith. 155 (2012), 1-13. (2012) Zbl1312.11077MR2982423DOI10.4064/aa155-1-1
  9. Iwaniec, H., Kowalski, E., 10.1090/coll/053, Colloquium Publications 53. American Mathematical Society (2004). (2004) Zbl1059.11001MR2061214DOI10.1090/coll/053
  10. Reuss, T., Pairs of k -free numbers, consecutive square-full numbers, Available at https://arxiv.org/abs/1212.3150v2 (2014), 28 pages. (2014) 
  11. Tolev, D. I., 10.1112/S0024609305004753, Bull. Lond. Math. Soc. 37 (2005), 827-834. (2005) Zbl1099.11042MR2186715DOI10.1112/S0024609305004753
  12. Tolev, D. I., Lectures on Elementary and Analytic Number Theory. II, St. Kliment Ohridski University Press, Sofia (2016), Bulgarian. (2016) 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.