Fredholmness of pseudo-differential operators with nonregular symbols

Kazushi Yoshitomi

Czechoslovak Mathematical Journal (2023)

  • Volume: 73, Issue: 3, page 941-954
  • ISSN: 0011-4642

Abstract

top
We establish the Fredholmness of a pseudo-differential operator whose symbol is of class C 0 , σ , 0 < σ < 1 , in the spatial variable. Our work here refines the work of H. Abels, C. Pfeuffer (2020).

How to cite

top

Yoshitomi, Kazushi. "Fredholmness of pseudo-differential operators with nonregular symbols." Czechoslovak Mathematical Journal 73.3 (2023): 941-954. <http://eudml.org/doc/299128>.

@article{Yoshitomi2023,
abstract = {We establish the Fredholmness of a pseudo-differential operator whose symbol is of class $C^\{0,\sigma \}$, $0<\sigma <1$, in the spatial variable. Our work here refines the work of H. Abels, C. Pfeuffer (2020).},
author = {Yoshitomi, Kazushi},
journal = {Czechoslovak Mathematical Journal},
keywords = {Fredholmness; pseudo-differential operator; nonregular symbol},
language = {eng},
number = {3},
pages = {941-954},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Fredholmness of pseudo-differential operators with nonregular symbols},
url = {http://eudml.org/doc/299128},
volume = {73},
year = {2023},
}

TY - JOUR
AU - Yoshitomi, Kazushi
TI - Fredholmness of pseudo-differential operators with nonregular symbols
JO - Czechoslovak Mathematical Journal
PY - 2023
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 73
IS - 3
SP - 941
EP - 954
AB - We establish the Fredholmness of a pseudo-differential operator whose symbol is of class $C^{0,\sigma }$, $0<\sigma <1$, in the spatial variable. Our work here refines the work of H. Abels, C. Pfeuffer (2020).
LA - eng
KW - Fredholmness; pseudo-differential operator; nonregular symbol
UR - http://eudml.org/doc/299128
ER -

References

top
  1. Abels, H., 10.1515/9783110250312, de Gruyter Graduate Lectures. Walter de Gruyter, Berlin (2012). (2012) Zbl1235.35001MR2884718DOI10.1515/9783110250312
  2. Abels, H., Pfeuffer, C., 10.1002/mana.201800361, Math. Nachr. 293 (2020), 822-846. (2020) Zbl07206433MR4100541DOI10.1002/mana.201800361
  3. Hörmander, L., 10.1007/978-3-540-49938-1, Grundlehren der Mathematischen Wissenschaften 274. Springer, Berlin (1994). (1994) Zbl0601.35001MR1313500DOI10.1007/978-3-540-49938-1
  4. Kohn, J. J., Nirenberg, L., 10.1002/cpa.3160180121, Commun. Pure Appl. Math. 18 (1965), 269-305. (1965) Zbl0171.35101MR0176362DOI10.1002/cpa.3160180121
  5. Kumano-go, H., Pseudo-Differential Operators, MIT Press, Cambridge (1982). (1982) Zbl0489.35003MR0666870
  6. Nagase, M., 10.1080/03605307708820054, Commun. Partial Differ. Equations 2 (1977), 1045-1061. (1977) Zbl0397.35071MR0470758DOI10.1080/03605307708820054
  7. Taylor, M. E., 10.1007/978-1-4612-0431-2, Progress in Mathematics 100. Brikhäuser, Boston (1991). (1991) Zbl0746.35062MR1121019DOI10.1007/978-1-4612-0431-2

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.