Fredholmness of pseudo-differential operators with nonregular symbols

Kazushi Yoshitomi

Czechoslovak Mathematical Journal (2023)

  • Volume: 73, Issue: 3, page 941-954
  • ISSN: 0011-4642

Abstract

top
We establish the Fredholmness of a pseudo-differential operator whose symbol is of class , , in the spatial variable. Our work here refines the work of H. Abels, C. Pfeuffer (2020).

How to cite

top

Yoshitomi, Kazushi. "Fredholmness of pseudo-differential operators with nonregular symbols." Czechoslovak Mathematical Journal 73.3 (2023): 941-954. <http://eudml.org/doc/299128>.

@article{Yoshitomi2023,
abstract = {We establish the Fredholmness of a pseudo-differential operator whose symbol is of class $C^\{0,\sigma \}$, $0<\sigma <1$, in the spatial variable. Our work here refines the work of H. Abels, C. Pfeuffer (2020).},
author = {Yoshitomi, Kazushi},
journal = {Czechoslovak Mathematical Journal},
keywords = {Fredholmness; pseudo-differential operator; nonregular symbol},
language = {eng},
number = {3},
pages = {941-954},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Fredholmness of pseudo-differential operators with nonregular symbols},
url = {http://eudml.org/doc/299128},
volume = {73},
year = {2023},
}

TY - JOUR
AU - Yoshitomi, Kazushi
TI - Fredholmness of pseudo-differential operators with nonregular symbols
JO - Czechoslovak Mathematical Journal
PY - 2023
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 73
IS - 3
SP - 941
EP - 954
AB - We establish the Fredholmness of a pseudo-differential operator whose symbol is of class $C^{0,\sigma }$, $0<\sigma <1$, in the spatial variable. Our work here refines the work of H. Abels, C. Pfeuffer (2020).
LA - eng
KW - Fredholmness; pseudo-differential operator; nonregular symbol
UR - http://eudml.org/doc/299128
ER -

References

top
  1. Abels, H., 10.1515/9783110250312, de Gruyter Graduate Lectures. Walter de Gruyter, Berlin (2012). (2012) Zbl1235.35001MR2884718DOI10.1515/9783110250312
  2. Abels, H., Pfeuffer, C., 10.1002/mana.201800361, Math. Nachr. 293 (2020), 822-846. (2020) Zbl07206433MR4100541DOI10.1002/mana.201800361
  3. Hörmander, L., 10.1007/978-3-540-49938-1, Grundlehren der Mathematischen Wissenschaften 274. Springer, Berlin (1994). (1994) Zbl0601.35001MR1313500DOI10.1007/978-3-540-49938-1
  4. Kohn, J. J., Nirenberg, L., 10.1002/cpa.3160180121, Commun. Pure Appl. Math. 18 (1965), 269-305. (1965) Zbl0171.35101MR0176362DOI10.1002/cpa.3160180121
  5. Kumano-go, H., Pseudo-Differential Operators, MIT Press, Cambridge (1982). (1982) Zbl0489.35003MR0666870
  6. Nagase, M., 10.1080/03605307708820054, Commun. Partial Differ. Equations 2 (1977), 1045-1061. (1977) Zbl0397.35071MR0470758DOI10.1080/03605307708820054
  7. Taylor, M. E., 10.1007/978-1-4612-0431-2, Progress in Mathematics 100. Brikhäuser, Boston (1991). (1991) Zbl0746.35062MR1121019DOI10.1007/978-1-4612-0431-2

NotesEmbed ?

top

You must be logged in to post comments.