On the diophantine equation
Archivum Mathematicum (2023)
- Volume: 059, Issue: 5, page 411-420
- ISSN: 0044-8753
Access Full Article
topAbstract
topHow to cite
topAlan, Murat, and Aydin, Mustafa. "On the diophantine equation $x^2+2^a3^b73^c=y^n $." Archivum Mathematicum 059.5 (2023): 411-420. <http://eudml.org/doc/299129>.
@article{Alan2023,
abstract = {In this paper, we find all integer solutions $ (x, y, n, a, b, c) $ of the equation in the title for non-negative integers $ a, b$ and $ c $ under the condition that the integers $ x $ and $ y $ are relatively prime and $ n \ge 3$. The proof depends on the famous primitive divisor theorem due to Bilu, Hanrot and Voutier and the computational techniques on some elliptic curves.},
author = {Alan, Murat, Aydin, Mustafa},
journal = {Archivum Mathematicum},
keywords = {diophantine equations; primitive divisor theorem; Ramanujan-Nagell equations},
language = {eng},
number = {5},
pages = {411-420},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {On the diophantine equation $x^2+2^a3^b73^c=y^n $},
url = {http://eudml.org/doc/299129},
volume = {059},
year = {2023},
}
TY - JOUR
AU - Alan, Murat
AU - Aydin, Mustafa
TI - On the diophantine equation $x^2+2^a3^b73^c=y^n $
JO - Archivum Mathematicum
PY - 2023
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 059
IS - 5
SP - 411
EP - 420
AB - In this paper, we find all integer solutions $ (x, y, n, a, b, c) $ of the equation in the title for non-negative integers $ a, b$ and $ c $ under the condition that the integers $ x $ and $ y $ are relatively prime and $ n \ge 3$. The proof depends on the famous primitive divisor theorem due to Bilu, Hanrot and Voutier and the computational techniques on some elliptic curves.
LA - eng
KW - diophantine equations; primitive divisor theorem; Ramanujan-Nagell equations
UR - http://eudml.org/doc/299129
ER -
References
top- Alan, M., Zengin, U., 10.1007/s10998-020-00321-6, Period. Math. Hung. 81 (2020), 284–291. (2020) MR4169906DOI10.1007/s10998-020-00321-6
- Bérczes, A., Pink, I., On the Diophantine equation , Arch. Math. (Basel) 91 (2008), 505–517. (2008) Zbl1175.11018MR2465869
- Bérczes, A., Pink, I., On generalized Lebesgue-Ramanujan-Nagell equations, An. Ştiinţ. Univ. “Ovidius” Constanţa Ser. Mat. 22 (2014), 51–57. (2014) MR3187736
- Bilu, Y., Hanrot, G., Voutier, P.M., Existence of primitive divisors of Lucas and Lehmer numbers (with Appendix by Mignotte), J. Reine Angew. Math. 539 (2001), 75–122. (2001) MR1863855
- Bosma, W., Cannon, J., Playoust, C., 10.1006/jsco.1996.0125, J. Symbolic Comput. 24 (1997), 235–265. (1997) Zbl0898.68039MR1484478DOI10.1006/jsco.1996.0125
- Cangúl, I.N., Demirci, M., Inam, M., Luca, F., Soydan, G., On the Diophantine equation , Math. Slovaca 63 (2013), 647–659. (2013) MR3071982
- Cangúl, I.N., Demirci, M., Luca, F., Pintér, A., Soydan, G., On the Diophantine equation , Fibonacci Q. 48 (2010), 39–46. (2010) MR2663418
- Carmichael, R.D., On the numerical factors of the arithmetic forms , Ann. Math. 2 (1913), 30–70. (1913) MR1502459
- Chakraborty, K., Hoque, A., Sharma, R., 10.1216/rmj.2021.51.459, Rocky Mountain J. Math. 51 (2021), 459–471. (2021) MR4278721DOI10.1216/rmj.2021.51.459
- Ghadermarzi, A., On the Diophantine equations and , Math. Slovaca 69 (2019), 507–520. (2019) MR3954019
- Godinho, H., Marques, D., Togbé, A., On the Diophantine equation for and , Math. Slovaca 66 (2016), 565–574. (2016) MR3543720
- Le, M.H., Soydan, G., A brief survey on the generalized Lebesgue-Ramanujan-Nagell equation, Surv. Math. Appl. 15 (2020), 473–523. (2020) MR4118124
- Luca, F., On the equation , Int. J. Math. Math. Sci. 29 (2002), 239–244. (2002) MR1897992
- Luca, F., Togbé, A., On the equation , Int. J. Number Theory 4 (2008), 973–979. (2008) MR2483306
- Luca, F., Togbé, A., On the equation , Colloq. Math. 116 (2009), 139–146. (2009) MR2504836
- Pan, X., 10.1007/s10998-013-3044-7, Period. Math. Hung. 67 (2013), 231–242. (2013) MR3118294DOI10.1007/s10998-013-3044-7
- Pink, I., 10.5486/PMD.2007.3477, Publ. Math. Debrecen 70 (2007), 149–166. (2007) MR2288472DOI10.5486/PMD.2007.3477
- Pink, I., Rabai, Z., On The Diophantine equation , Commun. Math. 19 (2011), 1–9. (2011) MR2855388
- Soydan, G., Tzanakis, N., Complete solution of the Diophantine equation , Bull. Hellenic Math. Soc. 60 (2016), 125–152. (2016) MR3622880
- Soydan, G., Ulas, M., Zhu, H., On the Diophantine equation , Indian J. Pure Appl. Math. 43 (2012), 251–261. (2012) MR2955592
- Tho, N.X., Solutions to A Lebesgue-Nagell equation, Bull. Aust. Math. Soc. 105 (2022), 19–30. (2022) MR4365058
- Zhu, H., Le, M., Soydan, G., Togbé, A., 10.1007/s10998-014-0073-9, Period. Math. Hung. 70 (2015), 233–247. (2015) MR3344003DOI10.1007/s10998-014-0073-9
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.