On the diophantine equation x 2 + 2 a 3 b 73 c = y n

Murat Alan; Mustafa Aydin

Archivum Mathematicum (2023)

  • Volume: 059, Issue: 5, page 411-420
  • ISSN: 0044-8753

Abstract

top
In this paper, we find all integer solutions ( x , y , n , a , b , c ) of the equation in the title for non-negative integers a , b and c under the condition that the integers x and y are relatively prime and n 3 . The proof depends on the famous primitive divisor theorem due to Bilu, Hanrot and Voutier and the computational techniques on some elliptic curves.

How to cite

top

Alan, Murat, and Aydin, Mustafa. "On the diophantine equation $x^2+2^a3^b73^c=y^n $." Archivum Mathematicum 059.5 (2023): 411-420. <http://eudml.org/doc/299129>.

@article{Alan2023,
abstract = {In this paper, we find all integer solutions $ (x, y, n, a, b, c) $ of the equation in the title for non-negative integers $ a, b$ and $ c $ under the condition that the integers $ x $ and $ y $ are relatively prime and $ n \ge 3$. The proof depends on the famous primitive divisor theorem due to Bilu, Hanrot and Voutier and the computational techniques on some elliptic curves.},
author = {Alan, Murat, Aydin, Mustafa},
journal = {Archivum Mathematicum},
keywords = {diophantine equations; primitive divisor theorem; Ramanujan-Nagell equations},
language = {eng},
number = {5},
pages = {411-420},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {On the diophantine equation $x^2+2^a3^b73^c=y^n $},
url = {http://eudml.org/doc/299129},
volume = {059},
year = {2023},
}

TY - JOUR
AU - Alan, Murat
AU - Aydin, Mustafa
TI - On the diophantine equation $x^2+2^a3^b73^c=y^n $
JO - Archivum Mathematicum
PY - 2023
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 059
IS - 5
SP - 411
EP - 420
AB - In this paper, we find all integer solutions $ (x, y, n, a, b, c) $ of the equation in the title for non-negative integers $ a, b$ and $ c $ under the condition that the integers $ x $ and $ y $ are relatively prime and $ n \ge 3$. The proof depends on the famous primitive divisor theorem due to Bilu, Hanrot and Voutier and the computational techniques on some elliptic curves.
LA - eng
KW - diophantine equations; primitive divisor theorem; Ramanujan-Nagell equations
UR - http://eudml.org/doc/299129
ER -

References

top
  1. Alan, M., Zengin, U., 10.1007/s10998-020-00321-6, Period. Math. Hung. 81 (2020), 284–291. (2020) MR4169906DOI10.1007/s10998-020-00321-6
  2. Bérczes, A., Pink, I., On the Diophantine equation x 2 + p 2 k = y n , Arch. Math. (Basel) 91 (2008), 505–517. (2008) Zbl1175.11018MR2465869
  3. Bérczes, A., Pink, I., On generalized Lebesgue-Ramanujan-Nagell equations, An. Ştiinţ. Univ. “Ovidius” Constanţa Ser. Mat. 22 (2014), 51–57. (2014) MR3187736
  4. Bilu, Y., Hanrot, G., Voutier, P.M., Existence of primitive divisors of Lucas and Lehmer numbers (with Appendix by Mignotte), J. Reine Angew. Math. 539 (2001), 75–122. (2001) MR1863855
  5. Bosma, W., Cannon, J., Playoust, C., 10.1006/jsco.1996.0125, J. Symbolic Comput. 24 (1997), 235–265. (1997) Zbl0898.68039MR1484478DOI10.1006/jsco.1996.0125
  6. Cangúl, I.N., Demirci, M., Inam, M., Luca, F., Soydan, G., On the Diophantine equation x 2 + 2 a 3 b 11 c = y n , Math. Slovaca 63 (2013), 647–659. (2013) MR3071982
  7. Cangúl, I.N., Demirci, M., Luca, F., Pintér, A., Soydan, G., On the Diophantine equation x 2 + 2 a 11 b = y n , Fibonacci Q. 48 (2010), 39–46. (2010) MR2663418
  8. Carmichael, R.D., On the numerical factors of the arithmetic forms α n - β n , Ann. Math. 2 (1913), 30–70. (1913) MR1502459
  9. Chakraborty, K., Hoque, A., Sharma, R., 10.1216/rmj.2021.51.459, Rocky Mountain J. Math. 51 (2021), 459–471. (2021) MR4278721DOI10.1216/rmj.2021.51.459
  10. Ghadermarzi, A., On the Diophantine equations x 2 + 2 α 3 β 19 γ = y n and x 2 + 2 α 3 β 13 γ = y n , Math. Slovaca 69 (2019), 507–520. (2019) MR3954019
  11. Godinho, H., Marques, D., Togbé, A., On the Diophantine equation x 2 + C = y n for C = 2 a 3 b 17 c and C = 2 a 13 b 17 c , Math. Slovaca 66 (2016), 565–574. (2016) MR3543720
  12. Le, M.H., Soydan, G., A brief survey on the generalized Lebesgue-Ramanujan-Nagell equation, Surv. Math. Appl. 15 (2020), 473–523. (2020) MR4118124
  13. Luca, F., On the equation x 2 + 2 a 3 b = y n , Int. J. Math. Math. Sci. 29 (2002), 239–244. (2002) MR1897992
  14. Luca, F., Togbé, A., On the equation x 2 + 2 a 5 b = y n , Int. J. Number Theory 4 (2008), 973–979. (2008) MR2483306
  15. Luca, F., Togbé, A., On the equation x 2 + 2 α 13 β = y n , Colloq. Math. 116 (2009), 139–146. (2009) MR2504836
  16. Pan, X., 10.1007/s10998-013-3044-7, Period. Math. Hung. 67 (2013), 231–242. (2013) MR3118294DOI10.1007/s10998-013-3044-7
  17. Pink, I., 10.5486/PMD.2007.3477, Publ. Math. Debrecen 70 (2007), 149–166. (2007) MR2288472DOI10.5486/PMD.2007.3477
  18. Pink, I., Rabai, Z., On The Diophantine equation x 2 + 5 k 17 l = y n , Commun. Math. 19 (2011), 1–9. (2011) MR2855388
  19. Soydan, G., Tzanakis, N., Complete solution of the Diophantine equation x 2 + 5 a 11 b = y n , Bull. Hellenic Math. Soc. 60 (2016), 125–152. (2016) MR3622880
  20. Soydan, G., Ulas, M., Zhu, H., On the Diophantine equation x 2 + 2 a 19 b = y n , Indian J. Pure Appl. Math. 43 (2012), 251–261. (2012) MR2955592
  21. Tho, N.X., Solutions to A Lebesgue-Nagell equation, Bull. Aust. Math. Soc. 105 (2022), 19–30. (2022) MR4365058
  22. Zhu, H., Le, M., Soydan, G., Togbé, A., 10.1007/s10998-014-0073-9, Period. Math. Hung. 70 (2015), 233–247. (2015) MR3344003DOI10.1007/s10998-014-0073-9

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.