Padovan and Perrin numbers as products of two generalized Lucas numbers

Kouèssi Norbert Adédji; Japhet Odjoumani; Alain Togbé

Archivum Mathematicum (2023)

  • Volume: 059, Issue: 4, page 315-337
  • ISSN: 0044-8753

Abstract

top
Let P m and E m be the m -th Padovan and Perrin numbers respectively. Let r , s be non-zero integers with r 1 and s { - 1 , 1 } , let { U n } n 0 be the generalized Lucas sequence given by U n + 2 = r U n + 1 + s U n , with U 0 = 0 and U 1 = 1 . In this paper, we give effective bounds for the solutions of the following Diophantine equations P m = U n U k and E m = U n U k , where m , n and k are non-negative integers. Then, we explicitly solve the above Diophantine equations for the Fibonacci, Pell and balancing sequences.

How to cite

top

Adédji, Kouèssi Norbert, Odjoumani, Japhet, and Togbé, Alain. "Padovan and Perrin numbers as products of two generalized Lucas numbers." Archivum Mathematicum 059.4 (2023): 315-337. <http://eudml.org/doc/299137>.

@article{Adédji2023,
abstract = {Let $P_m$ and $E_m$ be the $m$-th Padovan and Perrin numbers respectively. Let $r, s$ be non-zero integers with $r\ge 1$ and $s\in \lbrace -1, 1\rbrace $, let $\lbrace U_n\rbrace _\{n\ge 0\}$ be the generalized Lucas sequence given by $U_\{n+2\}=rU_\{n+1\} + sU_n$, with $U_0=0$ and $U_1=1.$ In this paper, we give effective bounds for the solutions of the following Diophantine equations \[ P\_m=U\_nU\_k\quad \text\{and\}\quad E\_m=U\_nU\_k\,, \] where $m$, $ n$ and $k$ are non-negative integers. Then, we explicitly solve the above Diophantine equations for the Fibonacci, Pell and balancing sequences.},
author = {Adédji, Kouèssi Norbert, Odjoumani, Japhet, Togbé, Alain},
journal = {Archivum Mathematicum},
keywords = {generalized Lucas numbers; linear forms in logarithms; reduction method},
language = {eng},
number = {4},
pages = {315-337},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {Padovan and Perrin numbers as products of two generalized Lucas numbers},
url = {http://eudml.org/doc/299137},
volume = {059},
year = {2023},
}

TY - JOUR
AU - Adédji, Kouèssi Norbert
AU - Odjoumani, Japhet
AU - Togbé, Alain
TI - Padovan and Perrin numbers as products of two generalized Lucas numbers
JO - Archivum Mathematicum
PY - 2023
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 059
IS - 4
SP - 315
EP - 337
AB - Let $P_m$ and $E_m$ be the $m$-th Padovan and Perrin numbers respectively. Let $r, s$ be non-zero integers with $r\ge 1$ and $s\in \lbrace -1, 1\rbrace $, let $\lbrace U_n\rbrace _{n\ge 0}$ be the generalized Lucas sequence given by $U_{n+2}=rU_{n+1} + sU_n$, with $U_0=0$ and $U_1=1.$ In this paper, we give effective bounds for the solutions of the following Diophantine equations \[ P_m=U_nU_k\quad \text{and}\quad E_m=U_nU_k\,, \] where $m$, $ n$ and $k$ are non-negative integers. Then, we explicitly solve the above Diophantine equations for the Fibonacci, Pell and balancing sequences.
LA - eng
KW - generalized Lucas numbers; linear forms in logarithms; reduction method
UR - http://eudml.org/doc/299137
ER -

References

top
  1. Baker, A., Davenport, H., The equations 3 x 2 - 2 = y 2 and 8 x 2 - 7 = z 2 , Quart. J. Math. Oxford Ser. (2) 20 (1969), 129–137. (1969) MR0248079
  2. Bugeaud, Y., Mignotte, M., Siksek, S., Classical and modular approaches to exponential Diophantine equations I. Fibonacci and Lucas powers, Ann. of Math. (2) 163 (2006), 969–1018. (2006) MR2215137
  3. Ddamulira, M., 10.1515/ms-2017-0467, Math. Slovaca 71 (2021), 275–284. (2021) MR4243626DOI10.1515/ms-2017-0467
  4. Dujella, A., Pethő, A., A generalization of a theorem of Baker and Davenport, Quart. J. Math. Oxford Ser. (2) 49 (1998), 291–306. (1998) MR1645552
  5. Guzmán, S., Luca, F., Linear combinations of factorials and s -units in a binary recurrence sequence, Ann. Math. Qué. 38 (2014), 169–188. (2014) MR3283974
  6. Kiss, P., 10.1007/BF01897310, Acta Math. Acad. Sci. Hungar. 40 (1–2) (1982), 119–123. (1982) MR0685998DOI10.1007/BF01897310
  7. Matveev, E.M., 10.1070/IM2000v064n06ABEH000314, Izv. Math. 64 (2000), 1217–1269. (2000) MR1817252DOI10.1070/IM2000v064n06ABEH000314
  8. Mignotte, M., 10.1016/0304-3975(78)90043-9, Theoret. Comput. Sci. 7.1 (1978), 117–121. (1978) Zbl0393.10009MR0498356DOI10.1016/0304-3975(78)90043-9
  9. Ribenboim, P., My numbers, my friends. Popular Lectures on Number Theory, Springer-Verlag, Berlin, Heidelberg, 2000. (2000) MR1761897
  10. Schlickewei, H.P., Schmidt, W.M., 10.4064/aa-72-1-1-44, Acta Arith. 72.1 (1995), 1–4. (1995) Zbl0851.11007MR1346803DOI10.4064/aa-72-1-1-44

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.