Padovan and Perrin numbers as products of two generalized Lucas numbers
Kouèssi Norbert Adédji; Japhet Odjoumani; Alain Togbé
Archivum Mathematicum (2023)
- Volume: 059, Issue: 4, page 315-337
- ISSN: 0044-8753
Access Full Article
topAbstract
topHow to cite
topAdédji, Kouèssi Norbert, Odjoumani, Japhet, and Togbé, Alain. "Padovan and Perrin numbers as products of two generalized Lucas numbers." Archivum Mathematicum 059.4 (2023): 315-337. <http://eudml.org/doc/299137>.
@article{Adédji2023,
abstract = {Let $P_m$ and $E_m$ be the $m$-th Padovan and Perrin numbers respectively. Let $r, s$ be non-zero integers with $r\ge 1$ and $s\in \lbrace -1, 1\rbrace $, let $\lbrace U_n\rbrace _\{n\ge 0\}$ be the generalized Lucas sequence given by $U_\{n+2\}=rU_\{n+1\} + sU_n$, with $U_0=0$ and $U_1=1.$ In this paper, we give effective bounds for the solutions of the following Diophantine equations \[ P\_m=U\_nU\_k\quad \text\{and\}\quad E\_m=U\_nU\_k\,, \]
where $m$, $ n$ and $k$ are non-negative integers. Then, we explicitly solve the above Diophantine equations for the Fibonacci, Pell and balancing sequences.},
author = {Adédji, Kouèssi Norbert, Odjoumani, Japhet, Togbé, Alain},
journal = {Archivum Mathematicum},
keywords = {generalized Lucas numbers; linear forms in logarithms; reduction method},
language = {eng},
number = {4},
pages = {315-337},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {Padovan and Perrin numbers as products of two generalized Lucas numbers},
url = {http://eudml.org/doc/299137},
volume = {059},
year = {2023},
}
TY - JOUR
AU - Adédji, Kouèssi Norbert
AU - Odjoumani, Japhet
AU - Togbé, Alain
TI - Padovan and Perrin numbers as products of two generalized Lucas numbers
JO - Archivum Mathematicum
PY - 2023
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 059
IS - 4
SP - 315
EP - 337
AB - Let $P_m$ and $E_m$ be the $m$-th Padovan and Perrin numbers respectively. Let $r, s$ be non-zero integers with $r\ge 1$ and $s\in \lbrace -1, 1\rbrace $, let $\lbrace U_n\rbrace _{n\ge 0}$ be the generalized Lucas sequence given by $U_{n+2}=rU_{n+1} + sU_n$, with $U_0=0$ and $U_1=1.$ In this paper, we give effective bounds for the solutions of the following Diophantine equations \[ P_m=U_nU_k\quad \text{and}\quad E_m=U_nU_k\,, \]
where $m$, $ n$ and $k$ are non-negative integers. Then, we explicitly solve the above Diophantine equations for the Fibonacci, Pell and balancing sequences.
LA - eng
KW - generalized Lucas numbers; linear forms in logarithms; reduction method
UR - http://eudml.org/doc/299137
ER -
References
top- Baker, A., Davenport, H., The equations and , Quart. J. Math. Oxford Ser. (2) 20 (1969), 129–137. (1969) MR0248079
- Bugeaud, Y., Mignotte, M., Siksek, S., Classical and modular approaches to exponential Diophantine equations I. Fibonacci and Lucas powers, Ann. of Math. (2) 163 (2006), 969–1018. (2006) MR2215137
- Ddamulira, M., 10.1515/ms-2017-0467, Math. Slovaca 71 (2021), 275–284. (2021) MR4243626DOI10.1515/ms-2017-0467
- Dujella, A., Pethő, A., A generalization of a theorem of Baker and Davenport, Quart. J. Math. Oxford Ser. (2) 49 (1998), 291–306. (1998) MR1645552
- Guzmán, S., Luca, F., Linear combinations of factorials and -units in a binary recurrence sequence, Ann. Math. Qué. 38 (2014), 169–188. (2014) MR3283974
- Kiss, P., 10.1007/BF01897310, Acta Math. Acad. Sci. Hungar. 40 (1–2) (1982), 119–123. (1982) MR0685998DOI10.1007/BF01897310
- Matveev, E.M., 10.1070/IM2000v064n06ABEH000314, Izv. Math. 64 (2000), 1217–1269. (2000) MR1817252DOI10.1070/IM2000v064n06ABEH000314
- Mignotte, M., 10.1016/0304-3975(78)90043-9, Theoret. Comput. Sci. 7.1 (1978), 117–121. (1978) Zbl0393.10009MR0498356DOI10.1016/0304-3975(78)90043-9
- Ribenboim, P., My numbers, my friends. Popular Lectures on Number Theory, Springer-Verlag, Berlin, Heidelberg, 2000. (2000) MR1761897
- Schlickewei, H.P., Schmidt, W.M., 10.4064/aa-72-1-1-44, Acta Arith. 72.1 (1995), 1–4. (1995) Zbl0851.11007MR1346803DOI10.4064/aa-72-1-1-44
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.