The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Padovan and Perrin numbers as products of two generalized Lucas numbers”

On k -Pell numbers which are sum of two Narayana’s cows numbers

Kouèssi Norbert Adédji, Mohamadou Bachabi, Alain Togbé (2025)

Mathematica Bohemica

Similarity:

For any positive integer k 2 , let ( P n ( k ) ) n 2 - k be the k -generalized Pell sequence which starts with 0 , , 0 , 1 ( k terms) with the linear recurrence P n ( k ) = 2 P n - 1 ( k ) + P n - 2 ( k ) + + P n - k ( k ) for n 2 . Let ( N n ) n 0 be Narayana’s sequence given by N 0 = N 1 = N 2 = 1 and N n + 3 = N n + 2 + N n . The purpose of this paper is to determine all k -Pell numbers which are sums of two Narayana’s numbers. More precisely, we study the Diophantine equation P p ( k ) = N n + N m in nonnegative integers k , p , n and m .

Bartz-Marlewski equation with generalized Lucas components

Hayder R. Hashim (2022)

Archivum Mathematicum

Similarity:

Let { U n } = { U n ( P , Q ) } and { V n } = { V n ( P , Q ) } be the Lucas sequences of the first and second kind respectively at the parameters P 1 and Q { - 1 , 1 } . In this paper, we provide a technique for characterizing the solutions of the so-called Bartz-Marlewski equation x 2 - 3 x y + y 2 + x = 0 , where ( x , y ) = ( U i , U j ) or ( V i , V j ) with i , j 1 . Then, the procedure of this technique is applied to completely resolve this equation with certain values of such parameters.

Mersenne numbers as a difference of two Lucas numbers

Murat Alan (2022)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

Let ( L n ) n 0 be the Lucas sequence. We show that the Diophantine equation L n - L m = M k has only the nonnegative integer solutions ( n , m , k ) = ( 2 , 0 , 1 ) , ( 3 , 1 , 2 ) , ( 3 , 2 , 1 ) , ( 4 , 3 , 2 ) , ( 5 , 3 , 3 ) , ( 6 , 2 , 4 ) , ( 6 , 5 , 3 ) where M k = 2 k - 1 is the k th Mersenne number and n > m .

On perfect powers in k -generalized Pell sequence

Zafer Şiar, Refik Keskin, Elif Segah Öztaş (2023)

Mathematica Bohemica

Similarity:

Let k 2 and let ( P n ( k ) ) n 2 - k be the k -generalized Pell sequence defined by P n ( k ) = 2 P n - 1 ( k ) + P n - 2 ( k ) + + P n - k ( k ) for n 2 with initial conditions P - ( k - 2 ) ( k ) = P - ( k - 3 ) ( k ) = = P - 1 ( k ) = P 0 ( k ) = 0 , P 1 ( k ) = 1 . In this study, we handle the equation P n ( k ) = y m in positive integers n , m , y , k such that k , y 2 , and give an upper bound on n . Also, we will show that the equation P n ( k ) = y m with 2 y 1000 has only one solution given by P 7 ( 2 ) = 13 2 .

The number of solutions to the generalized Pillai equation ± r a x ± s b y = c .

Reese Scott, Robert Styer (2013)

Journal de Théorie des Nombres de Bordeaux

Similarity:

We consider N , the number of solutions ( x , y , u , v ) to the equation ( - 1 ) u r a x + ( - 1 ) v s b y = c in nonnegative integers x , y and integers u , v { 0 , 1 } , for given integers a > 1 , b > 1 , c > 0 , r > 0 and s > 0 . When gcd ( r a , s b ) = 1 , we show that N 3 except for a finite number of cases all of which satisfy max ( a , b , r , s , x , y ) < 2 · 10 15 for each solution; when gcd ( a , b ) > 1 , we show that N 3 except for three infinite families of exceptional cases. We find several different ways to generate an infinite number of cases giving N = 3 solutions.

On the Diophantine equation j = 1 k j F j p = F n q

Gökhan Soydan, László Németh, László Szalay (2018)

Archivum Mathematicum

Similarity:

Let F n denote the n t h term of the Fibonacci sequence. In this paper, we investigate the Diophantine equation F 1 p + 2 F 2 p + + k F k p = F n q in the positive integers k and n , where p and q are given positive integers. A complete solution is given if the exponents are included in the set { 1 , 2 } . Based on the specific cases we could solve, and a computer search with p , q , k 100 we conjecture that beside the trivial solutions only F 8 = F 1 + 2 F 2 + 3 F 3 + 4 F 4 , F 4 2 = F 1 + 2 F 2 + 3 F 3 , and F 4 3 = F 1 3 + 2 F 2 3 + 3 F 3 3 satisfy the title equation.

Repdigits in generalized Pell sequences

Jhon J. Bravo, Jose L. Herrera (2020)

Archivum Mathematicum

Similarity:

For an integer k 2 , let ( n ) n be the k - generalized Pell sequence which starts with 0 , ... , 0 , 1 ( k terms) and each term afterwards is given by the linear recurrence n = 2 n - 1 + n - 2 + + n - k . In this paper, we find all k -generalized Pell numbers with only one distinct digit (the so-called repdigits). Some interesting estimations involving generalized Pell numbers, that we believe are of independent interest, are also deduced. This paper continues a previous work that searched for repdigits in the usual Pell sequence ( P n ( 2 ) ) n . ...

Lucas sequences and repdigits

Hayder Raheem Hashim, Szabolcs Tengely (2022)

Mathematica Bohemica

Similarity:

Let ( G n ) n 1 be a binary linear recurrence sequence that is represented by the Lucas sequences of the first and second kind, which are { U n } and { V n } , respectively. We show that the Diophantine equation G n = B · ( g l m - 1 ) / ( g l - 1 ) has only finitely many solutions in n , m + , where g 2 , l is even and 1 B g l - 1 . Furthermore, these solutions can be effectively determined by reducing such equation to biquadratic elliptic curves. Then, by a result of Baker (and its best improvement due to Hajdu and Herendi) related to the bounds of the integral...

A Diophantine inequality with four squares and one k th power of primes

Quanwu Mu, Minhui Zhu, Ping Li (2019)

Czechoslovak Mathematical Journal

Similarity:

Let k 5 be an odd integer and η be any given real number. We prove that if λ 1 , λ 2 , λ 3 , λ 4 , μ are nonzero real numbers, not all of the same sign, and λ 1 / λ 2 is irrational, then for any real number σ with 0 < σ < 1 / ( 8 ϑ ( k ) ) , the inequality | λ 1 p 1 2 + λ 2 p 2 2 + λ 3 p 3 2 + λ 4 p 4 2 + μ p 5 k + η | < max 1 j 5 p j - σ has infinitely many solutions in prime variables p 1 , p 2 , , p 5 , where ϑ ( k ) = 3 × 2 ( k - 5 ) / 2 for k = 5 , 7 , 9 and ϑ ( k ) = [ ( k 2 + 2 k + 5 ) / 8 ] for odd integer k with k 11 . This improves a recent result in W. Ge, T. Wang (2018).

The exceptional set for Diophantine inequality with unlike powers of prime variables

Wenxu Ge, Feng Zhao (2018)

Czechoslovak Mathematical Journal

Similarity:

Suppose that λ 1 , λ 2 , λ 3 , λ 4 are nonzero real numbers, not all negative, δ > 0 , 𝒱 is a well-spaced set, and the ratio λ 1 / λ 2 is algebraic and irrational. Denote by E ( 𝒱 , N , δ ) the number of v 𝒱 with v N such that the inequality | λ 1 p 1 2 + λ 2 p 2 3 + λ 3 p 3 4 + λ 4 p 4 5 - v | < v - δ has no solution in primes p 1 , p 2 , p 3 , p 4 . We show that E ( 𝒱 , N , δ ) N 1 + 2 δ - 1 / 72 + ε for any ε > 0 .

A note on the weighted Khintchine-Groshev Theorem

Mumtaz Hussain, Tatiana Yusupova (2014)

Journal de Théorie des Nombres de Bordeaux

Similarity:

Let W ( m , n ; ψ ̲ ) denote the set of ψ 1 , ... , ψ n –approximable points in m n . The classical Khintchine–Groshev theorem assumes a monotonicity condition on the approximating functions ψ ̲ . Removing monotonicity from the Khintchine–Groshev theorem is attributed to different authors for different cases of m and n . It can not be removed for m = n = 1 as Duffin–Schaeffer provided the counter example. We deal with the only remaining case m = 2 and thereby remove all unnecessary conditions from the Khintchine–Groshev theorem. ...

On the exponential diophantine equation x y + y x = z z

Xiaoying Du (2017)

Czechoslovak Mathematical Journal

Similarity:

For any positive integer D which is not a square, let ( u 1 , v 1 ) be the least positive integer solution of the Pell equation u 2 - D v 2 = 1 , and let h ( 4 D ) denote the class number of binary quadratic primitive forms of discriminant 4 D . If D satisfies 2 D and v 1 h ( 4 D ) 0 ( mod D ) , then D is called a singular number. In this paper, we prove that if ( x , y , z ) is a positive integer solution of the equation x y + y x = z z with 2 z , then maximum max { x , y , z } < 480000 and both x , y are singular numbers. Thus, one can possibly prove that the equation has no positive integer solutions...

Involutivity degree of a distribution at superdensity points of its tangencies

Silvano Delladio (2021)

Archivum Mathematicum

Similarity:

Let Φ 1 , ... , Φ k + 1 (with k 1 ) be vector fields of class C k in an open set U N + m , let 𝕄 be a N -dimensional C k submanifold of U and define 𝕋 : = { z 𝕄 : Φ 1 ( z ) , ... , Φ k + 1 ( z ) T z 𝕄 } where T z 𝕄 is the tangent space to 𝕄 at z . Then we expect the following property, which is obvious in the special case when z 0 is an interior point (relative to 𝕄 ) of 𝕋 : If z 0 𝕄 is a ( N + k ) -density point (relative to 𝕄 ) of 𝕋 then all the iterated Lie brackets of order less or equal to k Φ i 1 ( z 0 ) , [ Φ i 1 , Φ i 2 ] ( z 0 ) , [ [ Φ i 1 , Φ i 2 ] , Φ i 3 ] ( z 0 ) , ... ( h , i h k + 1 ) belong to T z 0 𝕄 . Such a property has been proved in [9] for k = 1 and its proof in the...