Modeling of permanent magnet linear generator and state estimation based on sliding mode observer: A wave energy system application
Amal Nasri; Iskander Boulaabi; Mansour Hajji; Anis Sellami; Fayçal Ben Hmida
Kybernetika (2023)
- Volume: 59, Issue: 5, page 655-669
- ISSN: 0023-5954
Access Full Article
topAbstract
topHow to cite
topNasri, Amal, et al. "Modeling of permanent magnet linear generator and state estimation based on sliding mode observer: A wave energy system application." Kybernetika 59.5 (2023): 655-669. <http://eudml.org/doc/299159>.
@article{Nasri2023,
abstract = {This paper synopsis a new solution for Permanent Magnets Linear Generator (PMLG) state estimation subject to bounded uncertainty. Therefore, a PMLG modeling method is presented based on an equivalent circuit, wherein a mathematical model of the generator adapted to wave energy conversion is established. Then, using the Linear Matrix Inequality (LMI) optimization and a Lyapunov function, this system's Sliding Mode Observer (SMO) design method is developed. Consequently, the proposed observer can give a robust state estimation. At last, numerical examples with and without uncertainty are included to exemplify the effectiveness and applicability of the suggested approaches.},
author = {Nasri, Amal, Boulaabi, Iskander, Hajji, Mansour, Sellami, Anis, Ben Hmida, Fayçal},
journal = {Kybernetika},
keywords = {wave energy; modeling; permanent magnet linear generator (PMLG); state estimation; sliding mode observer (SMO); linear matrix inequality (LMI)},
language = {eng},
number = {5},
pages = {655-669},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Modeling of permanent magnet linear generator and state estimation based on sliding mode observer: A wave energy system application},
url = {http://eudml.org/doc/299159},
volume = {59},
year = {2023},
}
TY - JOUR
AU - Nasri, Amal
AU - Boulaabi, Iskander
AU - Hajji, Mansour
AU - Sellami, Anis
AU - Ben Hmida, Fayçal
TI - Modeling of permanent magnet linear generator and state estimation based on sliding mode observer: A wave energy system application
JO - Kybernetika
PY - 2023
PB - Institute of Information Theory and Automation AS CR
VL - 59
IS - 5
SP - 655
EP - 669
AB - This paper synopsis a new solution for Permanent Magnets Linear Generator (PMLG) state estimation subject to bounded uncertainty. Therefore, a PMLG modeling method is presented based on an equivalent circuit, wherein a mathematical model of the generator adapted to wave energy conversion is established. Then, using the Linear Matrix Inequality (LMI) optimization and a Lyapunov function, this system's Sliding Mode Observer (SMO) design method is developed. Consequently, the proposed observer can give a robust state estimation. At last, numerical examples with and without uncertainty are included to exemplify the effectiveness and applicability of the suggested approaches.
LA - eng
KW - wave energy; modeling; permanent magnet linear generator (PMLG); state estimation; sliding mode observer (SMO); linear matrix inequality (LMI)
UR - http://eudml.org/doc/299159
ER -
References
top- Ackermann, T., Wind Power in Power Systems., John Wiley and Sons, 2012.
- Brooke, J., Wave Energy Conversion., Elsevier, 2003.
- Calabrese, D., Tricarico, G., Brescia, E., Cascella, G. L., Monopoli, V. G., Cupertino, F., , MDPI, Energies 13 (2020), 4647. DOI
- Chen, W., Saif, M., , Amer. Control Confer. (2006), 5. DOI
- Clément, A., McCullen, P., Falcão, A., Fiorentino, A., Gardner, F., Hammarlund, K., Lemonis, G., Lewis, T., Nielsen, K., Petroncini, S., others, , Renewable Sustainable Energy Rev. 6 (2002), 405-431. DOI
- Falcao, A. F. de, , Elsevier 14 (2010), 899-918. DOI
- Farrok, O., Islam, Md R., Sheikh, Md R. I., Guo, Y., Zhu, J., Jianguo, Lei, G., , IEEE Trans. Industry Appl. 54 (2018), 6005-6014. DOI
- Foteinis, S., , Elsevier 162 (2022), 112448. DOI
- Gahinet, P., Nemirovski, A., Laub, A. J., Chilali, M., LMI Control Toolbox, the MathWorks Inc, Natick., MA 1995.
- Gao, Z., Liu, X., , MDPI J., Processes 9 (2021), 300. DOI
- Jayalakshmi, N. S., Gaonkar, D. N., Kumar, K. S. K., , IEEE Int. Confer. Power Electron. Drives Energy Systems (PEDES) (2012), 1-5. DOI
- Luenberger, D., , IEEE Trans. Automat. Control 16 (1971), 596-602. DOI
- Mouni, E., Tnani, S., Champenois, G., , Simul- Modell. Practice Theory 16 (2008), 678-689. DOI
- Odgaard, P. F., Stoustrup, J., , IEEE Int. Confer. Control Appl. (2010), 310-315. DOI
- Polinder, H., Mueller, M. A., Scuotto, M., Prado, M. G. de Sousa, Linear generator systems for wave energy conversion., In: Proc. 7th European Wave and Tidal Energy Conference, Porto 2007, pp. 11-14.
- Remon, D., Cantarellas, A. M., Rodriguez, P., , IEEE Trans. Industry Appl. 52 (2016), 5029-5040. DOI
- Sename, O., New trends in design of observers for time-delay systems., Kybernetika 37 (2001), 427-458. MR1859095
- Simões, M. G., Farret, F. A., Modeling and Analysis with Induction Generators., CRC Press 2014.
- Tagliafierro, B., Martínez-Estévez, I., Domínguez, J., Crespo, A. J. C., Göteman, M., Engström, J., Gómez-Gesteira, M., , Appl. Energy, Elsevier 311 (2022), 118629. DOI
- Trapanese, M., Boscaino, V., Cipriani, G., Curto, D., Dio, V. Di, Franzitta, V., , IEEE Trans. Industrial Electron. 66 (2018), 4934-4944. DOI
- Wang, Z., Shen, Y., Zhang, X., Wang, Q., , Systems Control Lett. 61 (2012), 683-687. MR2924211DOI
- Wang, J., Wang, F., Wang, X., Yu, L., , Kybernetika 55 (2019), 586-603. MR4016000DOI
- Wang, J., Wang, F., Wang, X., Yu, L., , Kybernetika 55 (2019), 586-603. MR4016000DOI
- Zhang, Y., Li, G., , IEEE Trans. Sustainable Energy 11 (2019), 2201-2209. DOI
- Zhang, Y., Li, G., Zeng, T., , IEEE Amer. Control Confer. (ACC) (2019), 4803-4808. DOI
- Zhang, Y., Stansby, P., Li, G., , IEEE Trans. Sustainable Energy 12 (2020), 568-577. DOI
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.