Disturbance observer based integral terminal sliding mode control for permanent magnet synchronous motor system

Junxiao Wang; Fengxiang Wang; Xianbo Wang; Li Yu

Kybernetika (2019)

  • Volume: 55, Issue: 3, page 586-603
  • ISSN: 0023-5954

Abstract

top
This paper presents speed regulation issue of Permanent Magnet Synchronous Motor (PMSM) using a composite integral terminal sliding mode control scheme via a disturbance compensation technique. The PMSM q -axis and d -axis subsystems are firstly transformed into two linear subsystems by using feedback linearization technique, then, integral terminal sliding mode controller and finite-time controller are designed respectively. The proof of finite time stability are given for the PMSM closed-loop system. Compared with the corresponding asymptotical stability control method, the proposed controller can make the system output track the desired speed reference signal in finite time and obtain a better dynamic response and anti-disturbance performance. Meanwhile, considering the large chattering phenomenon caused by high switching gains, a composite integral terminal sliding mode control method based on disturbance observer is proposed to reduce chattering phenomenon. Through disturbance estimation based feed-forward compensation, the composite integral terminal sliding mode controller may take a smaller value for the switching gain without sacrificing disturbance rejection performance. Experimental results are provided to show the superiority of proposed control method.

How to cite

top

Wang, Junxiao, et al. "Disturbance observer based integral terminal sliding mode control for permanent magnet synchronous motor system." Kybernetika 55.3 (2019): 586-603. <http://eudml.org/doc/294849>.

@article{Wang2019,
abstract = {This paper presents speed regulation issue of Permanent Magnet Synchronous Motor (PMSM) using a composite integral terminal sliding mode control scheme via a disturbance compensation technique. The PMSM $q$-axis and $d$-axis subsystems are firstly transformed into two linear subsystems by using feedback linearization technique, then, integral terminal sliding mode controller and finite-time controller are designed respectively. The proof of finite time stability are given for the PMSM closed-loop system. Compared with the corresponding asymptotical stability control method, the proposed controller can make the system output track the desired speed reference signal in finite time and obtain a better dynamic response and anti-disturbance performance. Meanwhile, considering the large chattering phenomenon caused by high switching gains, a composite integral terminal sliding mode control method based on disturbance observer is proposed to reduce chattering phenomenon. Through disturbance estimation based feed-forward compensation, the composite integral terminal sliding mode controller may take a smaller value for the switching gain without sacrificing disturbance rejection performance. Experimental results are provided to show the superiority of proposed control method.},
author = {Wang, Junxiao, Wang, Fengxiang, Wang, Xianbo, Yu, Li},
journal = {Kybernetika},
keywords = {PMSM; integral terminal sliding mode control; finite-time control; feedback linearization; disturbance observer},
language = {eng},
number = {3},
pages = {586-603},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Disturbance observer based integral terminal sliding mode control for permanent magnet synchronous motor system},
url = {http://eudml.org/doc/294849},
volume = {55},
year = {2019},
}

TY - JOUR
AU - Wang, Junxiao
AU - Wang, Fengxiang
AU - Wang, Xianbo
AU - Yu, Li
TI - Disturbance observer based integral terminal sliding mode control for permanent magnet synchronous motor system
JO - Kybernetika
PY - 2019
PB - Institute of Information Theory and Automation AS CR
VL - 55
IS - 3
SP - 586
EP - 603
AB - This paper presents speed regulation issue of Permanent Magnet Synchronous Motor (PMSM) using a composite integral terminal sliding mode control scheme via a disturbance compensation technique. The PMSM $q$-axis and $d$-axis subsystems are firstly transformed into two linear subsystems by using feedback linearization technique, then, integral terminal sliding mode controller and finite-time controller are designed respectively. The proof of finite time stability are given for the PMSM closed-loop system. Compared with the corresponding asymptotical stability control method, the proposed controller can make the system output track the desired speed reference signal in finite time and obtain a better dynamic response and anti-disturbance performance. Meanwhile, considering the large chattering phenomenon caused by high switching gains, a composite integral terminal sliding mode control method based on disturbance observer is proposed to reduce chattering phenomenon. Through disturbance estimation based feed-forward compensation, the composite integral terminal sliding mode controller may take a smaller value for the switching gain without sacrificing disturbance rejection performance. Experimental results are provided to show the superiority of proposed control method.
LA - eng
KW - PMSM; integral terminal sliding mode control; finite-time control; feedback linearization; disturbance observer
UR - http://eudml.org/doc/294849
ER -

References

top
  1. Bhat, S. P., Bernstein, D. S., 10.1109/acc.1997.609245, In: Proc. American Control Conference, Albuquerque 1997, pp. 2513-2516. DOI10.1109/acc.1997.609245
  2. Bhat, S. P., Bernstein, D. S., 10.1137/s0363012997321358, SIAM J. Control Optim. 38 (1998), 751-766. Zbl0945.34039MR1756893DOI10.1137/s0363012997321358
  3. Bhat, S. P., Bernstein, D. S., 10.1109/9.668834, IEEE Trans. Automat. Control 43 (1998), 678-682. Zbl0925.93821MR1618028DOI10.1109/9.668834
  4. Bhat, S. P., Bernstein, D. S., 10.1007/s00498-005-0151-x, Math. Control Signals System 17 (2005), 101-127. MR2150956DOI10.1007/s00498-005-0151-x
  5. Chen, W. H., 10.1109/tmech.2004.839034, IEEE ASME Trans. Mechatron. 9(2004), 4, 706-710. DOI10.1109/tmech.2004.839034
  6. Chern, T. L., Wu, Y. C., 10.1109/41.161478, IEEE Trans. Ind. Electron. 39 (1992), 5, 460-463. DOI10.1109/41.161478
  7. Feng, Y., Zheng, J. F., Yu, X. H., Vu, Nguyen, 10.1109/tie.2009.2025290, IEEE Trans. Ind. Electron. 56 (2009), 9, 3424-3431. DOI10.1109/tie.2009.2025290
  8. Guo, L., Chen, W. H., 10.1002/rnc.978, Int. J. Robust Nonlinear Control 15 (2005), 3, 109-125. Zbl1078.93030MR2117031DOI10.1002/rnc.978
  9. Haimo, V. T., 10.1137/0324047, SIAM J. Control Optim. 24 (1986), 760-770. MR0846381DOI10.1137/0324047
  10. Han, J., 10.1109/tie.2008.2011621, IEEE Trans. Ind. Electron. 56 (2009), 3, 900-906. DOI10.1109/tie.2008.2011621
  11. Hsien, T. L., Sun, Y. Y., Tai, M. C., 10.1049/ip-epa:19970988, IEE Proc. Electr. Power. Appl. 144 (1997), 3, 173-181. DOI10.1049/ip-epa:19970988
  12. Khail, H. K., Nonlinear Systems PID predictive controller. Third Edition., Upper Saddle River, Prentice-Hall, NJ 1996. 
  13. Kim, H., Son, J., Lee, J., 10.1109/tie.2010.2098357, IEEE Trans. Ind. Electron. 58 (2011), 9, 4069-4077. DOI10.1109/tie.2010.2098357
  14. Kung, Y. S., Tsai, M. H., 10.1109/tpel.2007.909185, IEEE Trans. Power. Electron. 22 (2007), 6, 2476-2486. DOI10.1109/tpel.2007.909185
  15. Lai, C. K., Shyu, K. K., 10.1109/tie.2005.844230, IEEE Trans. Ind. Electron. 52 (2005), 2, 499-507. DOI10.1109/tie.2005.844230
  16. Leu, V. Q., Han, J. C., Jung, J. W., 10.1109/tpel.2011.2161488, IEEE Trans. Pow. Electron. 27 (2012), 3, 1530-1539. DOI10.1109/tpel.2011.2161488
  17. Levant, A., 10.1016/s0005-1098(97)00209-4, Automatica 34 (1998), 3, 379-384. Zbl0915.93013MR1623077DOI10.1016/s0005-1098(97)00209-4
  18. Li, J., Li, S. H., Chen, X. S., 10.1177/0142331211410920, Trans. Inst. Meas. Control 34 (2012), 5, 615-626. DOI10.1177/0142331211410920
  19. Li, S. H., Liu, Z. G., 10.1109/tie.2009.2024655, IEEE Trans. Ind. Electron. 56 (2009), 8, 3050-3059. DOI10.1109/tie.2009.2024655
  20. Li, S. H., Liu, H. X., Ding, S. H., 10.1177/0142331209339860, Trans. Inst. Meas. Control. 32 (2010), 2, 170-187. DOI10.1177/0142331209339860
  21. Li, S. H., Tian, Y. P., 10.1080/00207170601148291, Int. J. Control 80 (2007), 4, 646-657. Zbl1117.93004MR2304124DOI10.1080/00207170601148291
  22. Li, S. H., Zong, K., Liu, H. X., 10.1177/0142331210371814, Trans. Inst. Meas. Control. 33 (2011), 5, 522-541. DOI10.1177/0142331210371814
  23. Li, S. H., Zhou, M. M., Yu, X. H., 10.1109/tii.2012.2226896, IEEE Trans. Ind. Inform. 9 (2013), 4, 1879-1891. DOI10.1109/tii.2012.2226896
  24. Luo, Y., Chen, Y. Q., Ahnc, H. S., Pi, Y., 10.1016/j.conengprac.2010.05.005, Control. Eng. Practice. 18 (2010), 9, 1022-1036. MR2642618DOI10.1016/j.conengprac.2010.05.005
  25. She, J. H., Fang, M. Y., Ohyama, H., Hashimoto, H., Wu, M., 10.1109/tie.2007.905976, IEEE Trans. Ind. Electron. 55 (2008), 1, 380-389. DOI10.1109/tie.2007.905976
  26. Tang, R. Y., Modern permanent magnet synchronous motor theory and design., Machinery Industry Press, Beijing 1997. 
  27. Umeno, T., Hori, Y., 10.1109/41.97556, IEEE Trans. Ind. Electron. 38 (1991), 5, 363-368. DOI10.1109/41.97556
  28. Vilath, G., Rahman, M., Tseng, K., Uddin, M., 10.1109/tia.2003.808932, IEEE Trans. Indust. Appl. 39 (2003), 2, 408-415. DOI10.1109/tia.2003.808932
  29. Wang, G. J., Fong, C. T., Chang, K. J., 10.1109/41.915420, IEEE Trans. Ind. Electron. 48 (2001), 2, 408-415. DOI10.1109/41.915420
  30. Wang, J., Wang, F., Wang, G., al., et, 10.1109/tii.2018.2818153, IEEE Trans. Ind. Informa. 14 (2018), 9, 4159-4168. DOI10.1109/tii.2018.2818153
  31. Wang, J., Wang, F., Zhang, Z., al., et, 10.1109/tii.2017.2679283, IEEE Trans. Ind. Inforn. 13 (2017), 5, 2645-2656. DOI10.1109/tii.2017.2679283
  32. Yang, J., Li, S. H., Yu, X. H., 10.1109/tie.2012.2183841, IEEE Trans. Ind. Electron. 60 (2013), 1, 160-169. DOI10.1109/tie.2012.2183841
  33. Yang, J., Wu, H., Hu, L., al., et, Robust predictive speed regulation of converter-driven DC Motors via a discrete-time reduced-order GPIO., IEEE Trans. Ind. Electron, online (2018). 
  34. Zarchi, H. A., Markadeh, G. R. A., Soltani, J., 10.1016/j.enconman.2009.08.031, Energy. Convers. Manag. 51 (2010), 1, 71-80. DOI10.1016/j.enconman.2009.08.031
  35. Zhou, J., Wang, Y., 10.1049/ip-epa:20020187, IEE Proc. Electr. Power. Appl. 149 (2002), 2, 165-72. DOI10.1049/ip-epa:20020187
  36. Zong, Q., Zhao, Z. S., Zhang, J., 10.1049/iet-cta.2008.0610, IET Contr. Theory. Appl. 4 (2010), 7, 1282-1289. MR2768249DOI10.1049/iet-cta.2008.0610

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.