Disturbance observer based integral terminal sliding mode control for permanent magnet synchronous motor system
Junxiao Wang; Fengxiang Wang; Xianbo Wang; Li Yu
Kybernetika (2019)
- Volume: 55, Issue: 3, page 586-603
- ISSN: 0023-5954
Access Full Article
topAbstract
topHow to cite
topWang, Junxiao, et al. "Disturbance observer based integral terminal sliding mode control for permanent magnet synchronous motor system." Kybernetika 55.3 (2019): 586-603. <http://eudml.org/doc/294849>.
@article{Wang2019,
abstract = {This paper presents speed regulation issue of Permanent Magnet Synchronous Motor (PMSM) using a composite integral terminal sliding mode control scheme via a disturbance compensation technique. The PMSM $q$-axis and $d$-axis subsystems are firstly transformed into two linear subsystems by using feedback linearization technique, then, integral terminal sliding mode controller and finite-time controller are designed respectively. The proof of finite time stability are given for the PMSM closed-loop system. Compared with the corresponding asymptotical stability control method, the proposed controller can make the system output track the desired speed reference signal in finite time and obtain a better dynamic response and anti-disturbance performance. Meanwhile, considering the large chattering phenomenon caused by high switching gains, a composite integral terminal sliding mode control method based on disturbance observer is proposed to reduce chattering phenomenon. Through disturbance estimation based feed-forward compensation, the composite integral terminal sliding mode controller may take a smaller value for the switching gain without sacrificing disturbance rejection performance. Experimental results are provided to show the superiority of proposed control method.},
author = {Wang, Junxiao, Wang, Fengxiang, Wang, Xianbo, Yu, Li},
journal = {Kybernetika},
keywords = {PMSM; integral terminal sliding mode control; finite-time control; feedback linearization; disturbance observer},
language = {eng},
number = {3},
pages = {586-603},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Disturbance observer based integral terminal sliding mode control for permanent magnet synchronous motor system},
url = {http://eudml.org/doc/294849},
volume = {55},
year = {2019},
}
TY - JOUR
AU - Wang, Junxiao
AU - Wang, Fengxiang
AU - Wang, Xianbo
AU - Yu, Li
TI - Disturbance observer based integral terminal sliding mode control for permanent magnet synchronous motor system
JO - Kybernetika
PY - 2019
PB - Institute of Information Theory and Automation AS CR
VL - 55
IS - 3
SP - 586
EP - 603
AB - This paper presents speed regulation issue of Permanent Magnet Synchronous Motor (PMSM) using a composite integral terminal sliding mode control scheme via a disturbance compensation technique. The PMSM $q$-axis and $d$-axis subsystems are firstly transformed into two linear subsystems by using feedback linearization technique, then, integral terminal sliding mode controller and finite-time controller are designed respectively. The proof of finite time stability are given for the PMSM closed-loop system. Compared with the corresponding asymptotical stability control method, the proposed controller can make the system output track the desired speed reference signal in finite time and obtain a better dynamic response and anti-disturbance performance. Meanwhile, considering the large chattering phenomenon caused by high switching gains, a composite integral terminal sliding mode control method based on disturbance observer is proposed to reduce chattering phenomenon. Through disturbance estimation based feed-forward compensation, the composite integral terminal sliding mode controller may take a smaller value for the switching gain without sacrificing disturbance rejection performance. Experimental results are provided to show the superiority of proposed control method.
LA - eng
KW - PMSM; integral terminal sliding mode control; finite-time control; feedback linearization; disturbance observer
UR - http://eudml.org/doc/294849
ER -
References
top- Bhat, S. P., Bernstein, D. S., 10.1109/acc.1997.609245, In: Proc. American Control Conference, Albuquerque 1997, pp. 2513-2516. DOI10.1109/acc.1997.609245
- Bhat, S. P., Bernstein, D. S., 10.1137/s0363012997321358, SIAM J. Control Optim. 38 (1998), 751-766. Zbl0945.34039MR1756893DOI10.1137/s0363012997321358
- Bhat, S. P., Bernstein, D. S., 10.1109/9.668834, IEEE Trans. Automat. Control 43 (1998), 678-682. Zbl0925.93821MR1618028DOI10.1109/9.668834
- Bhat, S. P., Bernstein, D. S., 10.1007/s00498-005-0151-x, Math. Control Signals System 17 (2005), 101-127. MR2150956DOI10.1007/s00498-005-0151-x
- Chen, W. H., 10.1109/tmech.2004.839034, IEEE ASME Trans. Mechatron. 9(2004), 4, 706-710. DOI10.1109/tmech.2004.839034
- Chern, T. L., Wu, Y. C., 10.1109/41.161478, IEEE Trans. Ind. Electron. 39 (1992), 5, 460-463. DOI10.1109/41.161478
- Feng, Y., Zheng, J. F., Yu, X. H., Vu, Nguyen, 10.1109/tie.2009.2025290, IEEE Trans. Ind. Electron. 56 (2009), 9, 3424-3431. DOI10.1109/tie.2009.2025290
- Guo, L., Chen, W. H., 10.1002/rnc.978, Int. J. Robust Nonlinear Control 15 (2005), 3, 109-125. Zbl1078.93030MR2117031DOI10.1002/rnc.978
- Haimo, V. T., 10.1137/0324047, SIAM J. Control Optim. 24 (1986), 760-770. MR0846381DOI10.1137/0324047
- Han, J., 10.1109/tie.2008.2011621, IEEE Trans. Ind. Electron. 56 (2009), 3, 900-906. DOI10.1109/tie.2008.2011621
- Hsien, T. L., Sun, Y. Y., Tai, M. C., 10.1049/ip-epa:19970988, IEE Proc. Electr. Power. Appl. 144 (1997), 3, 173-181. DOI10.1049/ip-epa:19970988
- Khail, H. K., Nonlinear Systems PID predictive controller. Third Edition., Upper Saddle River, Prentice-Hall, NJ 1996.
- Kim, H., Son, J., Lee, J., 10.1109/tie.2010.2098357, IEEE Trans. Ind. Electron. 58 (2011), 9, 4069-4077. DOI10.1109/tie.2010.2098357
- Kung, Y. S., Tsai, M. H., 10.1109/tpel.2007.909185, IEEE Trans. Power. Electron. 22 (2007), 6, 2476-2486. DOI10.1109/tpel.2007.909185
- Lai, C. K., Shyu, K. K., 10.1109/tie.2005.844230, IEEE Trans. Ind. Electron. 52 (2005), 2, 499-507. DOI10.1109/tie.2005.844230
- Leu, V. Q., Han, J. C., Jung, J. W., 10.1109/tpel.2011.2161488, IEEE Trans. Pow. Electron. 27 (2012), 3, 1530-1539. DOI10.1109/tpel.2011.2161488
- Levant, A., 10.1016/s0005-1098(97)00209-4, Automatica 34 (1998), 3, 379-384. Zbl0915.93013MR1623077DOI10.1016/s0005-1098(97)00209-4
- Li, J., Li, S. H., Chen, X. S., 10.1177/0142331211410920, Trans. Inst. Meas. Control 34 (2012), 5, 615-626. DOI10.1177/0142331211410920
- Li, S. H., Liu, Z. G., 10.1109/tie.2009.2024655, IEEE Trans. Ind. Electron. 56 (2009), 8, 3050-3059. DOI10.1109/tie.2009.2024655
- Li, S. H., Liu, H. X., Ding, S. H., 10.1177/0142331209339860, Trans. Inst. Meas. Control. 32 (2010), 2, 170-187. DOI10.1177/0142331209339860
- Li, S. H., Tian, Y. P., 10.1080/00207170601148291, Int. J. Control 80 (2007), 4, 646-657. Zbl1117.93004MR2304124DOI10.1080/00207170601148291
- Li, S. H., Zong, K., Liu, H. X., 10.1177/0142331210371814, Trans. Inst. Meas. Control. 33 (2011), 5, 522-541. DOI10.1177/0142331210371814
- Li, S. H., Zhou, M. M., Yu, X. H., 10.1109/tii.2012.2226896, IEEE Trans. Ind. Inform. 9 (2013), 4, 1879-1891. DOI10.1109/tii.2012.2226896
- Luo, Y., Chen, Y. Q., Ahnc, H. S., Pi, Y., 10.1016/j.conengprac.2010.05.005, Control. Eng. Practice. 18 (2010), 9, 1022-1036. MR2642618DOI10.1016/j.conengprac.2010.05.005
- She, J. H., Fang, M. Y., Ohyama, H., Hashimoto, H., Wu, M., 10.1109/tie.2007.905976, IEEE Trans. Ind. Electron. 55 (2008), 1, 380-389. DOI10.1109/tie.2007.905976
- Tang, R. Y., Modern permanent magnet synchronous motor theory and design., Machinery Industry Press, Beijing 1997.
- Umeno, T., Hori, Y., 10.1109/41.97556, IEEE Trans. Ind. Electron. 38 (1991), 5, 363-368. DOI10.1109/41.97556
- Vilath, G., Rahman, M., Tseng, K., Uddin, M., 10.1109/tia.2003.808932, IEEE Trans. Indust. Appl. 39 (2003), 2, 408-415. DOI10.1109/tia.2003.808932
- Wang, G. J., Fong, C. T., Chang, K. J., 10.1109/41.915420, IEEE Trans. Ind. Electron. 48 (2001), 2, 408-415. DOI10.1109/41.915420
- Wang, J., Wang, F., Wang, G., al., et, 10.1109/tii.2018.2818153, IEEE Trans. Ind. Informa. 14 (2018), 9, 4159-4168. DOI10.1109/tii.2018.2818153
- Wang, J., Wang, F., Zhang, Z., al., et, 10.1109/tii.2017.2679283, IEEE Trans. Ind. Inforn. 13 (2017), 5, 2645-2656. DOI10.1109/tii.2017.2679283
- Yang, J., Li, S. H., Yu, X. H., 10.1109/tie.2012.2183841, IEEE Trans. Ind. Electron. 60 (2013), 1, 160-169. DOI10.1109/tie.2012.2183841
- Yang, J., Wu, H., Hu, L., al., et, Robust predictive speed regulation of converter-driven DC Motors via a discrete-time reduced-order GPIO., IEEE Trans. Ind. Electron, online (2018).
- Zarchi, H. A., Markadeh, G. R. A., Soltani, J., 10.1016/j.enconman.2009.08.031, Energy. Convers. Manag. 51 (2010), 1, 71-80. DOI10.1016/j.enconman.2009.08.031
- Zhou, J., Wang, Y., 10.1049/ip-epa:20020187, IEE Proc. Electr. Power. Appl. 149 (2002), 2, 165-72. DOI10.1049/ip-epa:20020187
- Zong, Q., Zhao, Z. S., Zhang, J., 10.1049/iet-cta.2008.0610, IET Contr. Theory. Appl. 4 (2010), 7, 1282-1289. MR2768249DOI10.1049/iet-cta.2008.0610
Citations in EuDML Documents
top- Amal Nasri, Iskander Boulaabi, Mansour Hajji, Anis Sellami, Fayçal Ben Hmida, Modeling of permanent magnet linear generator and state estimation based on sliding mode observer: A wave energy system application
- Özhan Bingöl, Haci Mehmet Güzey, Design of a neuro-sliding mode controller for interconnected quadrotor UAVs carrying a suspended payload
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.