On extensions of families of operators
Commentationes Mathematicae Universitatis Carolinae (2023)
- Volume: 64, Issue: 2, page 227-252
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topLihvoinen, Oleg. "On extensions of families of operators." Commentationes Mathematicae Universitatis Carolinae 64.2 (2023): 227-252. <http://eudml.org/doc/299164>.
@article{Lihvoinen2023,
abstract = {The strong closure of feasible states of families of operators is studied. The results are obtained for self-adjoint operators in reflexive Banach spaces and for more concrete case - families of elliptic systems encountered in the optimal layout of $r$ materials. The results show when it is possible to parametrize the strong closure by the same type of operators. The results for systems of elliptic operators for the case when number of unknown functions $m$ is less than the dimension $n$ of the reference domain are well-known, but we present several different approaches in this paper to prove that parametrization of the strong closure of feasible states can be done by convexification. Also, a new approach is offered to prove result for the strong closure of cogradients. There are given counterexamples for the case $m\ge n$ when the parametrization by convexification is not possible. This extends the known result for the case $m=n=2$.},
author = {Lihvoinen, Oleg},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {strong closure; feasible state; operator; elliptic system},
language = {eng},
number = {2},
pages = {227-252},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {On extensions of families of operators},
url = {http://eudml.org/doc/299164},
volume = {64},
year = {2023},
}
TY - JOUR
AU - Lihvoinen, Oleg
TI - On extensions of families of operators
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2023
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 64
IS - 2
SP - 227
EP - 252
AB - The strong closure of feasible states of families of operators is studied. The results are obtained for self-adjoint operators in reflexive Banach spaces and for more concrete case - families of elliptic systems encountered in the optimal layout of $r$ materials. The results show when it is possible to parametrize the strong closure by the same type of operators. The results for systems of elliptic operators for the case when number of unknown functions $m$ is less than the dimension $n$ of the reference domain are well-known, but we present several different approaches in this paper to prove that parametrization of the strong closure of feasible states can be done by convexification. Also, a new approach is offered to prove result for the strong closure of cogradients. There are given counterexamples for the case $m\ge n$ when the parametrization by convexification is not possible. This extends the known result for the case $m=n=2$.
LA - eng
KW - strong closure; feasible state; operator; elliptic system
UR - http://eudml.org/doc/299164
ER -
References
top- Aubin J.-P., Ekeland I., Applied Nonlinear Analysis, Pure Appl. Math. (N. Y.), Wiley-Intersci. Publ., John Wiley, New York, 1984. Zbl1115.47049MR0749753
- Beran M. J., 10.1063/1.524364, J. Math. Phys. 21 (1980), 2583–2585. DOI10.1063/1.524364
- Briane M., Nesi V., 10.1051/cocv:2004015, ESAIM Control Optim. Calc. Var. 10 (2004), no. 4, 452–477. MR2111075DOI10.1051/cocv:2004015
- Dunford N., Schwartz J. T., Linear Operators. I. General Theory, Pure and Applied Mathematics, 7, Interscience Publishers, New York; Interscience Publishers Ltd., London, 1958. MR0117523
- Dvořák J., Haslinger J., Miettinen M., On the problem of optimal material distribution, Report University of Jyväskylä 7 (1996).
- Ekeland I., Temam R., Convex Analysis and Variational Problems, Studies in Mathematics and Its Applications, 1, North-Holland Publishing Co., Amsterdam, American Elsevier Publishing Co., New York, 1976. MR0463994
- Gamkrelidze R. V., Fundamentals of Optimal Control, Izdat. Tbilis. Univ., Tbilisi, 1975 (Russian). MR0686791
- Kohn R. V., Strang G., 10.1002/cpa.3160390107, Comm. Pure Appl. Math. 39 (1986), no. 1, 113–137. MR0820342DOI10.1002/cpa.3160390107
- Kohn R. V., Strang G., 10.1002/cpa.3160390202, Comm. Pure Appl. Math. 39 (1986), no. 2, 139–182. MR0820067DOI10.1002/cpa.3160390202
- Kohn R. V., Strang G., 10.1002/cpa.3160390305, Comm. Pure Appl. Math. 39 (1986), no. 3, 353–377. MR0829845DOI10.1002/cpa.3160390305
- Lur'e K. A., Optimal Control in Problems of Mathematical Physics, Izdat. Nauka, Moscow, 1975 (Russian). MR0487655
- Murat F., Contre-exemples pour divers problèmes où le contrôle intervient dans les coefficients, Ann. Mat. Pura Appl. (4) 112 (1977), 49–68. MR0438205
- Murat F., Compacité par compensation, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 5 (1978), no. 3, 489–507 (French). MR0506997
- Nečas J., Les méthodes directes en théorie des équations elliptiques, Masson et Cie, Éditeurs, Paris; Academia, Éditeurs, Prague, 1967 (French). MR0227584
- Olejnik O. A., Yosifyan G. A., Shamaev A. S., Mathematical Problems in the Theory of Strongly Nonhomogeneous Elastic Media, Moscow University Press, Moscow, 1990 (Russian). MR1115306
- Raĭtums U. "E., The passage to the convex hull of a set of admissible operators in optimal control problems, Dokl. Akad. Nauk SSSR 285 (1985), no. 2, 289–292 (Russian). MR0820853
- Raitums U., The maximum principle and the convexification of optimal control problems, Control Cybernet. 23 (1994), no. 4, 745–760. MR1303381
- Raitums U., Lecture Notes on -convergence, Convexification and Optimal Control Problems for Elliptic Equations, Lecture Notes, 39, University of Jyväskylä, Department of Mathematics, Jyväskylä, 1997.
- Raitums U., 10.1023/A:1022611608062, J. Optim. Theory Appl. 92 (1997), no. 3, 633–660. MR1432612DOI10.1023/A:1022611608062
- Raitums U., On the strong closure of sets of feasible states and cogradients for elliptic equations, Dynam. Contin. Discrete Impuls. Systems 7 (2000), no. 3, 335–350. MR1774949
- Tartar L., Problèmes de contrôle des coefficientes dans les èquations aux dérivèes partielles, Control Theory, Numerical Methods and Computer Systems Modeling, Internat. Sympos., IRIA LABORIA, Rocquencourt, 1974, Lecture Notes in Econom. and Math. Systems, 107, Springer, Berlin, 1975, pages 420–426 (French). MR0428166
- Tartar L., Homogénéisation en hydrodynamique, Singular Perturbations and Boundary Layer Theory, Proc. Conf., École Centrale, Lyon, 1976, Lecture Notes in Math., 594, Springer, Berlin, 1977, pages 474–481 (French). MR0471604
- Tartar L., Remarks on optimal design problems, Calculus of Variations, Homogenization and Continuum Mechanics, Marseille, 1993, Ser. Adv. Math. Appl. Sci., 18, World Scientific Publishing Co., River Edge, 1994, pages 279–296. MR1428706
- Vainikko G., Kunisch K., 10.4171/ZAA/562, Z. Anal. Anwendungen 12 (1993), no. 2, 327–341. MR1245924DOI10.4171/ZAA/562
- Warga J., Optimal Control of Differential and Functional Equations, Academic Press, New York, 1972. Zbl0253.49001MR0372708
- Zaytsev O., On closure of the pre-images of families of mappings, Comment. Math. Univ. Carolin. 39 (1998), no. 3, 491–501. MR1666766
- Zaytsev O., 10.4171/ZAA/839, Z. Anal. Anwendungen 17 (1998), no. 3, 565–575. MR1649372DOI10.4171/ZAA/839
- Zhikov V. V., Estimates for an averaged matrix and an averaged tensor, Uspekhi Mat. Nauk 46 (1991), no. 3, 49–109, 239 (Russian); translation in Russian Math. Surveys 46 (1991), no. 3, 65–136. MR1134090
- Zhikov V. V., Kozlov S. M., Oleĭnik O. A., Averaging of Differential Operators, Nauka, Moscow, 1993 (Russian). MR1318242
- Zhikov V. V., Kozlov S. M., Oleĭnik O. A., Ngoan H. T., Averaging and -convergence of differential operators, Uspekhi Mat. Nauk 34 (1979), no. 5(209), 65–133, 256 (Russian). MR0562800
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.