On extensions of families of operators

Oleg Lihvoinen

Commentationes Mathematicae Universitatis Carolinae (2023)

  • Volume: 64, Issue: 2, page 227-252
  • ISSN: 0010-2628

Abstract

top
The strong closure of feasible states of families of operators is studied. The results are obtained for self-adjoint operators in reflexive Banach spaces and for more concrete case - families of elliptic systems encountered in the optimal layout of r materials. The results show when it is possible to parametrize the strong closure by the same type of operators. The results for systems of elliptic operators for the case when number of unknown functions m is less than the dimension n of the reference domain are well-known, but we present several different approaches in this paper to prove that parametrization of the strong closure of feasible states can be done by convexification. Also, a new approach is offered to prove result for the strong closure of cogradients. There are given counterexamples for the case m n when the parametrization by convexification is not possible. This extends the known result for the case m = n = 2 .

How to cite

top

Lihvoinen, Oleg. "On extensions of families of operators." Commentationes Mathematicae Universitatis Carolinae 64.2 (2023): 227-252. <http://eudml.org/doc/299164>.

@article{Lihvoinen2023,
abstract = {The strong closure of feasible states of families of operators is studied. The results are obtained for self-adjoint operators in reflexive Banach spaces and for more concrete case - families of elliptic systems encountered in the optimal layout of $r$ materials. The results show when it is possible to parametrize the strong closure by the same type of operators. The results for systems of elliptic operators for the case when number of unknown functions $m$ is less than the dimension $n$ of the reference domain are well-known, but we present several different approaches in this paper to prove that parametrization of the strong closure of feasible states can be done by convexification. Also, a new approach is offered to prove result for the strong closure of cogradients. There are given counterexamples for the case $m\ge n$ when the parametrization by convexification is not possible. This extends the known result for the case $m=n=2$.},
author = {Lihvoinen, Oleg},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {strong closure; feasible state; operator; elliptic system},
language = {eng},
number = {2},
pages = {227-252},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {On extensions of families of operators},
url = {http://eudml.org/doc/299164},
volume = {64},
year = {2023},
}

TY - JOUR
AU - Lihvoinen, Oleg
TI - On extensions of families of operators
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2023
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 64
IS - 2
SP - 227
EP - 252
AB - The strong closure of feasible states of families of operators is studied. The results are obtained for self-adjoint operators in reflexive Banach spaces and for more concrete case - families of elliptic systems encountered in the optimal layout of $r$ materials. The results show when it is possible to parametrize the strong closure by the same type of operators. The results for systems of elliptic operators for the case when number of unknown functions $m$ is less than the dimension $n$ of the reference domain are well-known, but we present several different approaches in this paper to prove that parametrization of the strong closure of feasible states can be done by convexification. Also, a new approach is offered to prove result for the strong closure of cogradients. There are given counterexamples for the case $m\ge n$ when the parametrization by convexification is not possible. This extends the known result for the case $m=n=2$.
LA - eng
KW - strong closure; feasible state; operator; elliptic system
UR - http://eudml.org/doc/299164
ER -

References

top
  1. Aubin J.-P., Ekeland I., Applied Nonlinear Analysis, Pure Appl. Math. (N. Y.), Wiley-Intersci. Publ., John Wiley, New York, 1984. Zbl1115.47049MR0749753
  2. Beran M. J., 10.1063/1.524364, J. Math. Phys. 21 (1980), 2583–2585. DOI10.1063/1.524364
  3. Briane M., Nesi V., 10.1051/cocv:2004015, ESAIM Control Optim. Calc. Var. 10 (2004), no. 4, 452–477. MR2111075DOI10.1051/cocv:2004015
  4. Dunford N., Schwartz J. T., Linear Operators. I. General Theory, Pure and Applied Mathematics, 7, Interscience Publishers, New York; Interscience Publishers Ltd., London, 1958. MR0117523
  5. Dvořák J., Haslinger J., Miettinen M., On the problem of optimal material distribution, Report University of Jyväskylä 7 (1996). 
  6. Ekeland I., Temam R., Convex Analysis and Variational Problems, Studies in Mathematics and Its Applications, 1, North-Holland Publishing Co., Amsterdam, American Elsevier Publishing Co., New York, 1976. MR0463994
  7. Gamkrelidze R. V., Fundamentals of Optimal Control, Izdat. Tbilis. Univ., Tbilisi, 1975 (Russian). MR0686791
  8. Kohn R. V., Strang G., 10.1002/cpa.3160390107, Comm. Pure Appl. Math. 39 (1986), no. 1, 113–137. MR0820342DOI10.1002/cpa.3160390107
  9. Kohn R. V., Strang G., 10.1002/cpa.3160390202, Comm. Pure Appl. Math. 39 (1986), no. 2, 139–182. MR0820067DOI10.1002/cpa.3160390202
  10. Kohn R. V., Strang G., 10.1002/cpa.3160390305, Comm. Pure Appl. Math. 39 (1986), no. 3, 353–377. MR0829845DOI10.1002/cpa.3160390305
  11. Lur'e K. A., Optimal Control in Problems of Mathematical Physics, Izdat. Nauka, Moscow, 1975 (Russian). MR0487655
  12. Murat F., Contre-exemples pour divers problèmes où le contrôle intervient dans les coefficients, Ann. Mat. Pura Appl. (4) 112 (1977), 49–68. MR0438205
  13. Murat F., Compacité par compensation, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 5 (1978), no. 3, 489–507 (French). MR0506997
  14. Nečas J., Les méthodes directes en théorie des équations elliptiques, Masson et Cie, Éditeurs, Paris; Academia, Éditeurs, Prague, 1967 (French). MR0227584
  15. Olejnik O. A., Yosifyan G. A., Shamaev A. S., Mathematical Problems in the Theory of Strongly Nonhomogeneous Elastic Media, Moscow University Press, Moscow, 1990 (Russian). MR1115306
  16. Raĭtums U. "E., The passage to the convex hull of a set of admissible operators in optimal control problems, Dokl. Akad. Nauk SSSR 285 (1985), no. 2, 289–292 (Russian). MR0820853
  17. Raitums U., The maximum principle and the convexification of optimal control problems, Control Cybernet. 23 (1994), no. 4, 745–760. MR1303381
  18. Raitums U., Lecture Notes on G -convergence, Convexification and Optimal Control Problems for Elliptic Equations, Lecture Notes, 39, University of Jyväskylä, Department of Mathematics, Jyväskylä, 1997. 
  19. Raitums U., 10.1023/A:1022611608062, J. Optim. Theory Appl. 92 (1997), no. 3, 633–660. MR1432612DOI10.1023/A:1022611608062
  20. Raitums U., On the strong closure of sets of feasible states and cogradients for elliptic equations, Dynam. Contin. Discrete Impuls. Systems 7 (2000), no. 3, 335–350. MR1774949
  21. Tartar L., Problèmes de contrôle des coefficientes dans les èquations aux dérivèes partielles, Control Theory, Numerical Methods and Computer Systems Modeling, Internat. Sympos., IRIA LABORIA, Rocquencourt, 1974, Lecture Notes in Econom. and Math. Systems, 107, Springer, Berlin, 1975, pages 420–426 (French). MR0428166
  22. Tartar L., Homogénéisation en hydrodynamique, Singular Perturbations and Boundary Layer Theory, Proc. Conf., École Centrale, Lyon, 1976, Lecture Notes in Math., 594, Springer, Berlin, 1977, pages 474–481 (French). MR0471604
  23. Tartar L., Remarks on optimal design problems, Calculus of Variations, Homogenization and Continuum Mechanics, Marseille, 1993, Ser. Adv. Math. Appl. Sci., 18, World Scientific Publishing Co., River Edge, 1994, pages 279–296. MR1428706
  24. Vainikko G., Kunisch K., 10.4171/ZAA/562, Z. Anal. Anwendungen 12 (1993), no. 2, 327–341. MR1245924DOI10.4171/ZAA/562
  25. Warga J., Optimal Control of Differential and Functional Equations, Academic Press, New York, 1972. Zbl0253.49001MR0372708
  26. Zaytsev O., On closure of the pre-images of families of mappings, Comment. Math. Univ. Carolin. 39 (1998), no. 3, 491–501. MR1666766
  27. Zaytsev O., 10.4171/ZAA/839, Z. Anal. Anwendungen 17 (1998), no. 3, 565–575. MR1649372DOI10.4171/ZAA/839
  28. Zhikov V. V., Estimates for an averaged matrix and an averaged tensor, Uspekhi Mat. Nauk 46 (1991), no. 3, 49–109, 239 (Russian); translation in Russian Math. Surveys 46 (1991), no. 3, 65–136. MR1134090
  29. Zhikov V. V., Kozlov S. M., Oleĭnik O. A., Averaging of Differential Operators, Nauka, Moscow, 1993 (Russian). MR1318242
  30. Zhikov V. V., Kozlov S. M., Oleĭnik O. A., Ngoan H. T., Averaging and G -convergence of differential operators, Uspekhi Mat. Nauk 34 (1979), no. 5(209), 65–133, 256 (Russian). MR0562800

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.