# Is it wise to keep laminating ?

ESAIM: Control, Optimisation and Calculus of Variations (2004)

- Volume: 10, Issue: 4, page 452-477
- ISSN: 1292-8119

## Access Full Article

top## Abstract

top## How to cite

topBriane, Marc, and Nesi, Vincenzo. "Is it wise to keep laminating ?." ESAIM: Control, Optimisation and Calculus of Variations 10.4 (2004): 452-477. <http://eudml.org/doc/245945>.

@article{Briane2004,

abstract = {We study the corrector matrix $P^\{\epsilon \}$ to the conductivity equations. We show that if $P^\{\epsilon \}$ converges weakly to the identity, then for any laminate $\det P^\{\epsilon \}\ge 0$ at almost every point. This simple property is shown to be false for generic microgeometries if the dimension is greater than two in the work Briane et al. [Arch. Ration. Mech. Anal., to appear]. In two dimensions it holds true for any microgeometry as a corollary of the work in Alessandrini and Nesi [Arch. Ration. Mech. Anal. 158 (2001) 155-171]. We use this property of laminates to prove that, in any dimension, the classical Hashin-Shtrikman bounds are not attained by laminates, in certain regimes, when the number of phases is greater than two. In addition we establish new bounds for the effective conductivity, which are asymptotically optimal for mixtures of three isotropic phases among a certain class of microgeometries, including orthogonal laminates, which we then call quasiorthogonal.},

author = {Briane, Marc, Nesi, Vincenzo},

journal = {ESAIM: Control, Optimisation and Calculus of Variations},

keywords = {homogenization; bounds; composites; laminates; Hashin-Shtrikman bounds; effective conductivity; quasiorthogonal laminates},

language = {eng},

number = {4},

pages = {452-477},

publisher = {EDP-Sciences},

title = {Is it wise to keep laminating ?},

url = {http://eudml.org/doc/245945},

volume = {10},

year = {2004},

}

TY - JOUR

AU - Briane, Marc

AU - Nesi, Vincenzo

TI - Is it wise to keep laminating ?

JO - ESAIM: Control, Optimisation and Calculus of Variations

PY - 2004

PB - EDP-Sciences

VL - 10

IS - 4

SP - 452

EP - 477

AB - We study the corrector matrix $P^{\epsilon }$ to the conductivity equations. We show that if $P^{\epsilon }$ converges weakly to the identity, then for any laminate $\det P^{\epsilon }\ge 0$ at almost every point. This simple property is shown to be false for generic microgeometries if the dimension is greater than two in the work Briane et al. [Arch. Ration. Mech. Anal., to appear]. In two dimensions it holds true for any microgeometry as a corollary of the work in Alessandrini and Nesi [Arch. Ration. Mech. Anal. 158 (2001) 155-171]. We use this property of laminates to prove that, in any dimension, the classical Hashin-Shtrikman bounds are not attained by laminates, in certain regimes, when the number of phases is greater than two. In addition we establish new bounds for the effective conductivity, which are asymptotically optimal for mixtures of three isotropic phases among a certain class of microgeometries, including orthogonal laminates, which we then call quasiorthogonal.

LA - eng

KW - homogenization; bounds; composites; laminates; Hashin-Shtrikman bounds; effective conductivity; quasiorthogonal laminates

UR - http://eudml.org/doc/245945

ER -

## References

top- [1] G. Alessandrini and V. Nesi, Univalent $\sigma $-harmonic mappings. Arch. Ration. Mech. Anal. 158 (2001) 155-171. Zbl0977.31006MR1838656
- [2] G. Alessandrini and V. Nesi, Univalent $\sigma $-harmonic mappings: applications to composites. ESAIM: COCV 7 (2002) 379-406. Zbl1024.30010MR1925034
- [3] P. Bauman, A. Marini and V. Nesi, Univalent solutions of an elliptic system of partial differential equations arising in homogenization. Indiana Univ. Math. J. 50 (2001) (Spring). Zbl1330.35121MR1871388
- [4] A. Bensoussan, J.L. Lions and G. Papanicolaou, Asymptotic Analysis for Periodic Structures. North-Holland (1978). Zbl0404.35001MR503330
- [5] M. Briane, Correctors for the homogenization of a laminate. Adv. Math. Sci. Appl. 4 (1994) 357-379. Zbl0829.35009MR1294225
- [6] M. Briane, G.W. Milton and V. Nesi, Change of sign of the corrector’s determinant in three dimensions. Arch. Ration. Mech. Anal. To appear. Zbl1118.78009
- [7] A. Cherkaev, Variational methods for structural optimization. Appl. Math. Sci. 140 (2000). Zbl0956.74001MR1763123
- [8] A. Cherkaev and L.V. Gibiansky, Extremal structures of multiphase heat conducting composites. Internat J. Solids Structures 33 (1996) 2609-2618. Zbl0901.73050
- [9] L.V. Gibiansky and O. Sigmund, Multiphase composites with extremal bulk modulus. J. Mech. Phys. Solids 48 (2000) 461-498. Zbl0989.74060MR1737888
- [10] Z. Hashin and S. Shtrikman, A variational approach to the theory of effective magnetic permeability of multiphase materials. J. Appl. Phys. 33 (1962) 3125-3131. Zbl0111.41401
- [11] K.A. Lurie and A.V. Cherkaev, Exact estimates of conductivity of composites formed by two isotropically conducting media taken in prescribed proportions. Proc. R. Soc. Edinb. A 99 (1984) 71-87. Zbl0564.73079MR781086
- [12] K.A. Lurie and A.V. Cherkaev, The problem of formation of an optimal isotropic multicomponent composite. J. Opt. Theory Appl. 46 (1985) 571-589. Zbl0545.73005
- [13] K.A. Lurie and A.V. Cherkaev, Exact estimates of the conductivity of a binary mixture of isotropic materials. Proc. R. Soc. Edinb. A 104 (1986) 21-38. Zbl0623.73011MR877890
- [14] G.W. Milton, Concerning bounds on transport and mechanical properties of multicomponent composite materials. Appl. Phys A 26 (1981) 125-130.
- [15] G.W. Milton and R.V. Kohn, Variational bounds on the effective moduli of anisotropic composites. J. Mech. Phys. Solids 36 (1988) 597-629. Zbl0672.73012MR969257
- [16] F. Murat, Compacité par compensation : condition nécessaire et suffisante de continuité faible sous une hypothèse de rang constant. Ann. Scuola Norm. Sup. Pisa Cl. Sci. 4 (1981) 69-102. Zbl0464.46034MR616901
- [17] F. Murat, H-convergence. Séminaire d’Analyse Fonctionnelle et Numérique (1977-78), Université d’Alger. English translation: Murat F. and Tartar L., H-convergence. Topics in the Mathematical Modelling of Composite Materials, L. Cherkaev and R.V. Kohn Ed., Birkaüser, Boston, Progr. Nonlinear Differential Equations Appl. (1998) 21-43. Zbl0920.35019
- [18] F. Murat and L. Tartar, Calcul des variations et homogénéisation, in Les Méthodes de l’homogénéisation : théorie et applications en physique. Eyrolles (1985) 319-369.
- [19] V. Nesi, Using quasiconvex functionals to bound the effective conductivity of composite materials. Proc. R. Soc. Edinb. Sect. A 123 (1993) 633-679. Zbl0791.49042MR1237607
- [20] V. Nesi, Bounds on the effective conductivity of $2d$ composites made of $n\ge 3$ isotropic phases in prescribed volume fractions: the weighted translation method. Proc. R. Soc. Edinb. A 125 (1995) 1219-1239. Zbl0852.35016MR1363001
- [21] S. Spagnolo, Sul limite delle soluzioni di problemi di Cauchy relativi all’equazione del calore. Ann. Scuola Norm. Sup. Pisa 3 (1967) 657-699. Zbl0153.42103
- [22] S. Spagnolo, Sulla convergenza di soluzioni di equazioni paraboliche ed ellittiche. Ann. Scuola Norm. Sup. Pisa 3 (1968) 571-597. Zbl0174.42101MR240443
- [23] L. Tartar, Estimations de coefficients homogénéisés. Lect. Notes Math. 704 (1978) 364-373. English translation: Estimations of homogenized coefficients, in Topics in the mathematical modelling of composite materials. Progr. Nonlinear Differ. Equ. Appl. 31 (1997) 9-20. Zbl0920.35018MR540123
- [24] L. Tartar, Estimations fines des coefficients homogénéisés, in Ennio De Giorgi’s Colloquium, Paris, 1983, P. Kree Ed., Pitman, Boston (1985) 168-187. Zbl0586.35004
- [25] L. Tartar, Compensated compactness and applications to p.d.e. in nonlinear analysis and mechanics, Heriot-Watt Symposium, Vol. IV, R.J. Knops Ed., Pitman, Boston (1979) 136-212. Zbl0437.35004MR584398

## Citations in EuDML Documents

top## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.