An elementary proof of Marcellini Sbordone semicontinuity theorem
Tomáš G. Roskovec; Filip Soudský
Kybernetika (2023)
- Volume: 59, Issue: 5, page 723-736
- ISSN: 0023-5954
Access Full Article
topAbstract
topHow to cite
topRoskovec, Tomáš G., and Soudský, Filip. "An elementary proof of Marcellini Sbordone semicontinuity theorem." Kybernetika 59.5 (2023): 723-736. <http://eudml.org/doc/299166>.
@article{Roskovec2023,
abstract = {The weak lower semicontinuity of the functional \[ F(u)=\int \_\{\Omega \}f(x,u,\nabla u) \{\rm d\} x \]
is a classical topic that was studied thoroughly. It was shown that if the function $f$ is continuous and convex in the last variable, the functional is sequentially weakly lower semicontinuous on $W^\{1,p\}(\Omega )$. However, the known proofs use advanced instruments of real and functional analysis. Our aim here is to present a proof understandable even for students familiar only with the elementary measure theory.},
author = {Roskovec, Tomáš G., Soudský, Filip},
journal = {Kybernetika},
keywords = {convexity; sequential semicontinuity; calculus of variation; minimizer},
language = {eng},
number = {5},
pages = {723-736},
publisher = {Institute of Information Theory and Automation AS CR},
title = {An elementary proof of Marcellini Sbordone semicontinuity theorem},
url = {http://eudml.org/doc/299166},
volume = {59},
year = {2023},
}
TY - JOUR
AU - Roskovec, Tomáš G.
AU - Soudský, Filip
TI - An elementary proof of Marcellini Sbordone semicontinuity theorem
JO - Kybernetika
PY - 2023
PB - Institute of Information Theory and Automation AS CR
VL - 59
IS - 5
SP - 723
EP - 736
AB - The weak lower semicontinuity of the functional \[ F(u)=\int _{\Omega }f(x,u,\nabla u) {\rm d} x \]
is a classical topic that was studied thoroughly. It was shown that if the function $f$ is continuous and convex in the last variable, the functional is sequentially weakly lower semicontinuous on $W^{1,p}(\Omega )$. However, the known proofs use advanced instruments of real and functional analysis. Our aim here is to present a proof understandable even for students familiar only with the elementary measure theory.
LA - eng
KW - convexity; sequential semicontinuity; calculus of variation; minimizer
UR - http://eudml.org/doc/299166
ER -
References
top- Acerbi, E., Fusco, N., , Arch. Rational Mech. Anal. 86 (1984), 2, 125-145. MR0751305DOI
- Alibert, J.-J., Dacorogna, B., , Arch. Rational Mech. Anal. 117 (1992), 2, 155-166. MR1145109DOI
- Ball, J. M., Kirchheim, B., Kristensen, J., , Calc. Var. Partial Differential Equations 11 (2000), 4, 333-359. MR1808126DOI
- Benešová, B., Kružík, M., , SIAM Rev. 59 (2017), 4, 703-766. MR3720354DOI
- Bourdin, B., Francfort, G. A., Marigo, J.-J., , J. Elasticity 91 (2008), 1-3, 5-148. MR2390547DOI
- Dacorogna, B., 10.1007/BFb0096144, Lecture Notes in Mathematics Vol. 922, Springer-Verlag, Berlin - New York 1982. MR0658130DOI10.1007/BFb0096144
- Dacorogna, B., , Springer Science and Business Media, 2007. MR2361288DOI
- Bois-Reymond, P. du, , Math. Ann. 15 (1879), 2, 283-314. MR1510012DOI
- Eisen, G., , Manuscripta Math. 27 (1979), 1, 73-79. MR0524978DOI
- Ekeland, I., 10.1016/0022-247X(74)90025-0, J. Math. Anal. Appl. 47 (1974), 324-353. Zbl0286.49015MR0346619DOI10.1016/0022-247X(74)90025-0
- Ekeland, I., , Bull. Amer. Math. Soc. (N.S.) 1 (1979), 3, 443-474. Zbl0441.49011MR0526967DOI
- Ekeland, I., Temam, R., Analyse convexe et problèmes variationnels., Collection Études Mathématiques. Dunod, Paris, Gauthier-Villars, Paris - Brussels - Montreal 1974. MR0463993
- Fonseca, I., Malý, J., 10.1016/s0294-1449(97)80139-4, Ann. Inst. H. Poincaré C Anal. Non Linéaire 14 (1997), 3, 309-338. MR1450951DOI10.1016/s0294-1449(97)80139-4
- Fonseca, I., Müller, S., , SIAM J. Math. Anal. 30 (1999), 6, 1355-1390. MR1718306DOI
- Giaquinta, M., Giusti, E., , Acta Math. 148 (1982), 31-46. MR0666107DOI
- Giusti, E., Direct Methods in the Calculus of Variations., World Scientific, 2003. MR1962933
- Grabovsky, Y., , Arch. Ration. Mech. Anal. 227 (2018), 2, 607-636. MR3740383DOI
- Guerra, A., Kristensen, J., , Arch. Ration. Mech. Anal. 245 (2022), 1, 479-500. MR4444078DOI
- Kałamajska, A., , Colloq. Math. 74 (1997), 1, 71-78. MR1455456DOI
- Kristensen, J., , Math. Ann. 313 (1999), 4, 653-710. MR1686943DOI
- Kristensen, J., , Nonlinear Anal. 120 (2015), 43-56. MR3348045DOI
- Kristensen, J., Rindler, F., , Arch. Ration. Mech. Anal. 197 (2010), 2, 539-598. MR2660519DOI
- Lagrange, J. L., Mécanique analytique, Vol. 1., Mallet - Bachelier, 1853. MR2858305
- Leoni, G., A First Course in Sobolev Spaces, Vol. 181 Graduate Studies in Mathematics. (Second edition.), American Mathematical Society, Providence 2017. MR3726909
- Lukeš, J., Malý, J., Measure and Integral. (Second edition.), Matfyzpress, Prague 2005. MR2316454
- Marcellini, P., 10.1007/BF01168345, Manuscr. Math. 51 (1985), 1-3, 1-28. MR0788671DOI10.1007/BF01168345
- Marcellini, P., Sbordone, C., , Nonlinear Anal. 4 (1980), 2, 241-257. MR0563807DOI
- Meyers, N. G., , Trans. Amer. Math. Soc. 119 (1965), 125-149. MR0188838DOI
- Mingione, G., , Appl. Math. 51 (2006), 4, 355-426. MR2291779DOI
- Morrey, Ch. B., Jr., , Pacific J. Math. 2 (1952), 25-53. MR0054865DOI
- Prinari, F., , NoDEA Nonlinear Differential Equations Appl. 22 (2015), 6, 1591-1605. MR3415015DOI
- Serrin, J., , Trans. Amer. Math. Soc. 101 (1961), 139-167. MR0138018DOI
- Sil, S., 10.1515/acv-2016-0058, Adv. Calc. Var. 12 (2019), 1, 57-84. MR3898186DOI10.1515/acv-2016-0058
- Tonelli, L., , Rendiconti del Circolo Matematico di Palermo (1884-1940), 44 (1920), 1, 167-249. DOI
- Verde, A., Zecca, G., , Nonlinear Anal. 71 (2009), 10, 4515-4524. MR2548683DOI
- Šverák, V., Rank-one convexity does not imply quasiconvexity., Proc. Roy. Soc. Edinburgh Sect. A 120 (1992), 1-2, 185-189. MR1149994
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.