On lower semicontinuity of multiple integrals

Agnieszka Kałamajska

Colloquium Mathematicae (1997)

  • Volume: 74, Issue: 1, page 71-78
  • ISSN: 0010-1354

Abstract

top
We give a new short proof of the Morrey-Acerbi-Fusco-Marcellini Theorem on lower semicontinuity of the variational functional Ω F ( x , u , u ) d x . The proofs are based on arguments from the theory of Young measures.

How to cite

top

Kałamajska, Agnieszka. "On lower semicontinuity of multiple integrals." Colloquium Mathematicae 74.1 (1997): 71-78. <http://eudml.org/doc/210502>.

@article{Kałamajska1997,
abstract = {We give a new short proof of the Morrey-Acerbi-Fusco-Marcellini Theorem on lower semicontinuity of the variational functional $\int _\{Ω\} F(x,u,∇u)dx$. The proofs are based on arguments from the theory of Young measures.},
author = {Kałamajska, Agnieszka},
journal = {Colloquium Mathematicae},
keywords = {lower semicontinuity; quasi convexity; Young measures},
language = {eng},
number = {1},
pages = {71-78},
title = {On lower semicontinuity of multiple integrals},
url = {http://eudml.org/doc/210502},
volume = {74},
year = {1997},
}

TY - JOUR
AU - Kałamajska, Agnieszka
TI - On lower semicontinuity of multiple integrals
JO - Colloquium Mathematicae
PY - 1997
VL - 74
IS - 1
SP - 71
EP - 78
AB - We give a new short proof of the Morrey-Acerbi-Fusco-Marcellini Theorem on lower semicontinuity of the variational functional $\int _{Ω} F(x,u,∇u)dx$. The proofs are based on arguments from the theory of Young measures.
LA - eng
KW - lower semicontinuity; quasi convexity; Young measures
UR - http://eudml.org/doc/210502
ER -

References

top
  1. [1] E. Acerbi and N. Fusco, Semicontinuity problems in the calculus of variations, Arch. Rational Mech. Anal. 86 (1984), 125-145. Zbl0565.49010
  2. [2] L. Ambrosio, New lower semicontinuity results for integral functionals, Rend. Accad. Naz. Sci. XL Mem. Mat. Sci. Fis. Mat. Natur. 105 (1987), 1-42. Zbl0642.49007
  3. [3] J. M. Ball, A version of the fundamental theorem for Young measures, in: PDE's and Continuum Models of Phase Transitions, M. Rascle, D. Serre and M. Slemrod (eds.), Lecture Notes in Phys. 344, Springer, Berlin, 1989. 
  4. [4] J. M. Ball, Convexity conditions and existence theorems in nonlinear elasticity, Arch. Rational Mech. Anal. 63 (1977), 337-403. Zbl0368.73040
  5. [5] J. M. Ball and F. Murat, Remarks on Chacon's Biting Lemma, Proc. Amer. Math. Soc. 107 (1989), 655-663. Zbl0678.46023
  6. [6] J. M. Ball and K. W. Zhang, Lower semicontinuity of multiple integrals and the Biting Lemma, Proc. Roy. Soc. Edinburgh Sect. A 114 (1990), 367-379. Zbl0716.49011
  7. [7] B. Bojarski, Remarks on some geometric properties of Sobolev mappings, in: Functional Analysis and Related Topics, S. Koshi (ed.), World Scientific, Singapore, 1991, 65-76. Zbl0835.46025
  8. [8] B. Bojarski and P. Hajłasz, Pointwise inequalities for Sobolev functions and some applications, Studia Math. 106 (1993), 77-92. Zbl0810.46030
  9. [9] A. P. Calderón and A. Zygmund, Local properties of solutions of elliptic partial differential equations, ibid. 20 (1961), 171-225. Zbl0099.30103
  10. [10] B. Dacorogna, Direct Methods in the Calculus of Variations, Springer, Berlin, 1989. Zbl0703.49001
  11. [11] M. Esteban, A direct variational approach to Skyrme's model for meson fields, Comm. Math. Phys. 105 (1986), 571-591. Zbl0621.58035
  12. [12] L. C. Evans, Weak Convergence Methods for Nonlinear Partial Differential Equations, CMBS Regional Conf. Ser. in Math. 74, Amer. Math. Soc., Providence, R.I., 1990. 
  13. [13] I. Ekeland and R. Temam, Convex Analysis and Variational Problems, North-Holland, Amsterdam, 1976. Zbl0322.90046
  14. [14] A. D. Ioffe, On lower semicontinuity of integral functionals, I, II, SIAM J. Control Optim. 15 (1977), 521-538, 991-1000. Zbl0361.46037
  15. [15] D. Kinderlehrer and P. Pedregal, Characterisation of Young measures generated by gradients, Arch. Rational Mech. Anal. 115 (1991), 329-365. Zbl0754.49020
  16. [16] D. Kinderlehrer and P. Pedregal, Gradient Young measures generated by sequences in Sobolev spaces, J. Geom. Anal. (to appear). Zbl0808.46046
  17. [17] J. Kristensen, Lower semicontinuity of variational integrals, Ph.D. Thesis, Mathematical Institute, The Technical University of Denmark, 1994. 
  18. [18] F. C. Liu, A Luzin type property of Sobolev functions, Indiana Univ. Math. J. 26 (1977), 645-651. Zbl0368.46036
  19. [19] P. Marcellini, Approximation of quasiconvex functions, and lower semicontinuity of multiple integrals, Manuscripta Math. 51 (1985), 1-28. Zbl0573.49010
  20. [20] N. G. Meyers, Quasi-convexity and lower semi-continuity of multiple variational functionals of any order, Trans. Amer. Math. Soc. 119 (1965), 125-149. Zbl0166.38501
  21. [21] J. Michael and W. Ziemer, A Lusin type approximation of Sobolev functions by smooth functions, in: Contemp. Math. 42, Amer. Math. Soc., 1985, 135-167. Zbl0592.41031
  22. [22] C. B. Morrey, Multiple Integrals in the Calculus of Variations, Springer, Berlin, 1966. 
  23. [23] M. Struwe, Variational Methods, Applications to Nonlinear Partial Differential Equations and Hamiltonian Systems, Springer, Berlin, 1990. 
  24. [24] K. Zhang, Biting theorems for Jacobians and their applications, Ann. Inst. H. Poincaré Anal. Non Linéaire 7 (1990), 345-365. Zbl0717.49012

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.