# On lower semicontinuity of multiple integrals

Colloquium Mathematicae (1997)

- Volume: 74, Issue: 1, page 71-78
- ISSN: 0010-1354

## Access Full Article

top## Abstract

top## How to cite

topKałamajska, Agnieszka. "On lower semicontinuity of multiple integrals." Colloquium Mathematicae 74.1 (1997): 71-78. <http://eudml.org/doc/210502>.

@article{Kałamajska1997,

abstract = {We give a new short proof of the Morrey-Acerbi-Fusco-Marcellini Theorem on lower semicontinuity of the variational functional $\int _\{Ω\} F(x,u,∇u)dx$. The proofs are based on arguments from the theory of Young measures.},

author = {Kałamajska, Agnieszka},

journal = {Colloquium Mathematicae},

keywords = {lower semicontinuity; quasi convexity; Young measures},

language = {eng},

number = {1},

pages = {71-78},

title = {On lower semicontinuity of multiple integrals},

url = {http://eudml.org/doc/210502},

volume = {74},

year = {1997},

}

TY - JOUR

AU - Kałamajska, Agnieszka

TI - On lower semicontinuity of multiple integrals

JO - Colloquium Mathematicae

PY - 1997

VL - 74

IS - 1

SP - 71

EP - 78

AB - We give a new short proof of the Morrey-Acerbi-Fusco-Marcellini Theorem on lower semicontinuity of the variational functional $\int _{Ω} F(x,u,∇u)dx$. The proofs are based on arguments from the theory of Young measures.

LA - eng

KW - lower semicontinuity; quasi convexity; Young measures

UR - http://eudml.org/doc/210502

ER -

## References

top- [1] E. Acerbi and N. Fusco, Semicontinuity problems in the calculus of variations, Arch. Rational Mech. Anal. 86 (1984), 125-145. Zbl0565.49010
- [2] L. Ambrosio, New lower semicontinuity results for integral functionals, Rend. Accad. Naz. Sci. XL Mem. Mat. Sci. Fis. Mat. Natur. 105 (1987), 1-42. Zbl0642.49007
- [3] J. M. Ball, A version of the fundamental theorem for Young measures, in: PDE's and Continuum Models of Phase Transitions, M. Rascle, D. Serre and M. Slemrod (eds.), Lecture Notes in Phys. 344, Springer, Berlin, 1989.
- [4] J. M. Ball, Convexity conditions and existence theorems in nonlinear elasticity, Arch. Rational Mech. Anal. 63 (1977), 337-403. Zbl0368.73040
- [5] J. M. Ball and F. Murat, Remarks on Chacon's Biting Lemma, Proc. Amer. Math. Soc. 107 (1989), 655-663. Zbl0678.46023
- [6] J. M. Ball and K. W. Zhang, Lower semicontinuity of multiple integrals and the Biting Lemma, Proc. Roy. Soc. Edinburgh Sect. A 114 (1990), 367-379. Zbl0716.49011
- [7] B. Bojarski, Remarks on some geometric properties of Sobolev mappings, in: Functional Analysis and Related Topics, S. Koshi (ed.), World Scientific, Singapore, 1991, 65-76. Zbl0835.46025
- [8] B. Bojarski and P. Hajłasz, Pointwise inequalities for Sobolev functions and some applications, Studia Math. 106 (1993), 77-92. Zbl0810.46030
- [9] A. P. Calderón and A. Zygmund, Local properties of solutions of elliptic partial differential equations, ibid. 20 (1961), 171-225. Zbl0099.30103
- [10] B. Dacorogna, Direct Methods in the Calculus of Variations, Springer, Berlin, 1989. Zbl0703.49001
- [11] M. Esteban, A direct variational approach to Skyrme's model for meson fields, Comm. Math. Phys. 105 (1986), 571-591. Zbl0621.58035
- [12] L. C. Evans, Weak Convergence Methods for Nonlinear Partial Differential Equations, CMBS Regional Conf. Ser. in Math. 74, Amer. Math. Soc., Providence, R.I., 1990.
- [13] I. Ekeland and R. Temam, Convex Analysis and Variational Problems, North-Holland, Amsterdam, 1976. Zbl0322.90046
- [14] A. D. Ioffe, On lower semicontinuity of integral functionals, I, II, SIAM J. Control Optim. 15 (1977), 521-538, 991-1000. Zbl0361.46037
- [15] D. Kinderlehrer and P. Pedregal, Characterisation of Young measures generated by gradients, Arch. Rational Mech. Anal. 115 (1991), 329-365. Zbl0754.49020
- [16] D. Kinderlehrer and P. Pedregal, Gradient Young measures generated by sequences in Sobolev spaces, J. Geom. Anal. (to appear). Zbl0808.46046
- [17] J. Kristensen, Lower semicontinuity of variational integrals, Ph.D. Thesis, Mathematical Institute, The Technical University of Denmark, 1994.
- [18] F. C. Liu, A Luzin type property of Sobolev functions, Indiana Univ. Math. J. 26 (1977), 645-651. Zbl0368.46036
- [19] P. Marcellini, Approximation of quasiconvex functions, and lower semicontinuity of multiple integrals, Manuscripta Math. 51 (1985), 1-28. Zbl0573.49010
- [20] N. G. Meyers, Quasi-convexity and lower semi-continuity of multiple variational functionals of any order, Trans. Amer. Math. Soc. 119 (1965), 125-149. Zbl0166.38501
- [21] J. Michael and W. Ziemer, A Lusin type approximation of Sobolev functions by smooth functions, in: Contemp. Math. 42, Amer. Math. Soc., 1985, 135-167. Zbl0592.41031
- [22] C. B. Morrey, Multiple Integrals in the Calculus of Variations, Springer, Berlin, 1966.
- [23] M. Struwe, Variational Methods, Applications to Nonlinear Partial Differential Equations and Hamiltonian Systems, Springer, Berlin, 1990.
- [24] K. Zhang, Biting theorems for Jacobians and their applications, Ann. Inst. H. Poincaré Anal. Non Linéaire 7 (1990), 345-365. Zbl0717.49012

## Citations in EuDML Documents

top## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.