Monadic quasi-modal distributive nearlattices

Ismael Calomino

Commentationes Mathematicae Universitatis Carolinae (2023)

  • Volume: 64, Issue: 2, page 161-174
  • ISSN: 0010-2628

Abstract

top
We prove that there is a one to one correspondence between monadic finite quasi-modal operators on a distributive nearlattice and quantifiers on the distributive lattice of its finitely generated filters, extending the results given in ``Calomino I., Celani S., González L. J.: Quasi-modal operators on distributive nearlattices, Rev. Unión Mat. Argent. 61 (2020), 339--352".

How to cite

top

Calomino, Ismael. "Monadic quasi-modal distributive nearlattices." Commentationes Mathematicae Universitatis Carolinae 64.2 (2023): 161-174. <http://eudml.org/doc/299168>.

@article{Calomino2023,
abstract = {We prove that there is a one to one correspondence between monadic finite quasi-modal operators on a distributive nearlattice and quantifiers on the distributive lattice of its finitely generated filters, extending the results given in ``Calomino I., Celani S., González L. J.: Quasi-modal operators on distributive nearlattices, Rev. Unión Mat. Argent. 61 (2020), 339--352".},
author = {Calomino, Ismael},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {distributive nearlattice; modal operator; filter},
language = {eng},
number = {2},
pages = {161-174},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Monadic quasi-modal distributive nearlattices},
url = {http://eudml.org/doc/299168},
volume = {64},
year = {2023},
}

TY - JOUR
AU - Calomino, Ismael
TI - Monadic quasi-modal distributive nearlattices
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2023
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 64
IS - 2
SP - 161
EP - 174
AB - We prove that there is a one to one correspondence between monadic finite quasi-modal operators on a distributive nearlattice and quantifiers on the distributive lattice of its finitely generated filters, extending the results given in ``Calomino I., Celani S., González L. J.: Quasi-modal operators on distributive nearlattices, Rev. Unión Mat. Argent. 61 (2020), 339--352".
LA - eng
KW - distributive nearlattice; modal operator; filter
UR - http://eudml.org/doc/299168
ER -

References

top
  1. Abbott J. C., Semi-boolean algebra, Mat. Vesnik 19 (1967), no. 4, 177–198. MR0239957
  2. Araújo J., Kinyon M., 10.1007/s10587-011-0062-6, Czech. Math. J. 61(136) (2011), no. 4, 975–992. MR2886250DOI10.1007/s10587-011-0062-6
  3. Calomino I., Celani S. A., González L. J., 10.33044/revuma.v61n2a10, Rev. Un. Mat. Argentina 61 (2020), no. 2, 339–352. MR4198915DOI10.33044/revuma.v61n2a10
  4. Celani S., 10.21136/MB.2001.134115, Math. Bohem. 126 (2001), no. 4, 721–736. MR1869464DOI10.21136/MB.2001.134115
  5. Celani S., Calomino I., 10.1007/s00012-014-0269-0, Algebra Universalis 71 (2014), no. 2, 127–153. MR3183387DOI10.1007/s00012-014-0269-0
  6. Celani S., Calomino I., On homomorphic images and the free distributive lattice extension of a distributive nearlattice, Rep. Math. Logic 51 (2016), 57–73. MR3562693
  7. Celani S., Calomino I., 10.1515/ms-2017-0201, Math. Slovaca 69 (2019), no. 1, 35–52. MR3903625DOI10.1515/ms-2017-0201
  8. Chajda I., Halaš R., An example of a congruence distributive variety having no near-unanimity term, Acta Univ. M. Belii Ser. Math. (2006), no. 13, 29–31. MR2353310
  9. Chajda I., Halaš R., Kühr J., Semilattice Structures, Research and Exposition in Mathematics, 30, Heldermann Verlag, Lemgo, 2007. MR2326262
  10. Chajda I., Kolařík M., Nearlattices, Discrete Math. 308 (2008), no. 21, 4906–4913. Zbl1151.06004MR2446101
  11. Cignoli R., 10.1016/0012-365X(91)90312-P, Discrete Math. 96 (1991), no. 3, 183–197. MR1139446DOI10.1016/0012-365X(91)90312-P
  12. Cornish W. H., Hickman R. C., 10.1007/BF01902195, Acta Math. Acad. Sci. Hungar. 32 (1978), no. 1–2, 5–16. Zbl0497.06005MR0551490DOI10.1007/BF01902195
  13. González L. J., 10.1007/s00500-017-2750-0, Soft Comput. 22 (2018), no. 9, 2797–2807. DOI10.1007/s00500-017-2750-0
  14. González L. J., 10.1007/s00153-018-0628-1, Arch. Math. Logic 58 (2019), no. 1–2, 219–243. MR3902813DOI10.1007/s00153-018-0628-1
  15. González L. J., Calomino I., 10.1007/s00012-019-0622-4, Algebra Universalis 80 (2019), no. 4, Paper No. 48, 21 pages. MR4040591DOI10.1007/s00012-019-0622-4
  16. González L. J., Calomino I., 10.1016/j.disc.2021.112511, Discrete Math. 344 (2021), no. 9, Paper No. 112511, 8 pages. MR4274211DOI10.1016/j.disc.2021.112511
  17. Halaš R., 10.18514/MMN.2006.140, Miskolc Math. Notes 7 (2006), no. 2, 141–146. Zbl1120.06003MR2310273DOI10.18514/MMN.2006.140
  18. Halmos P. R., Algebraic logic. I. Monadic Boolean algebras, Compositio Math. 12 (1956), 217–249. MR0078304
  19. Hickman R., 10.1080/00927878008822537, Comm. Algebra 8 (1980), no. 17, 1653–1685. MR0585925DOI10.1080/00927878008822537

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.