Seasonal time-series imputation of gap missing algorithm (STIGMA)
Eduardo Rangel-Heras; Pavel Zuniga; Alma Y. Alanis; Esteban A. Hernandez-Vargas; Oscar D. Sanchez
Kybernetika (2023)
- Volume: 59, Issue: 6, page 861-879
- ISSN: 0023-5954
Access Full Article
topAbstract
topHow to cite
topRangel-Heras, Eduardo, et al. "Seasonal time-series imputation of gap missing algorithm (STIGMA)." Kybernetika 59.6 (2023): 861-879. <http://eudml.org/doc/299203>.
@article{Rangel2023,
abstract = {This work presents a new approach for the imputation of missing data in weather time-series from a seasonal pattern; the seasonal time-series imputation of gap missing algorithm (STIGMA). The algorithm takes advantage from a seasonal pattern for the imputation of unknown data by averaging available data. We test the algorithm using data measured every $10$ minutes over a period of $365$ days during the year 2010; the variables include global irradiance, diffuse irradiance, ultraviolet irradiance, and temperature, arranged in a matrix of dimensions $52,560$ rows for data points over time and $4$ columns for weather variables. The particularity of this work is that the algorithm is well-suited for the imputation of values when the missing data are presented continuously and in seasonal patterns. The algorithm employs a date-time index to collect available data for the imputation of missing data, repeating the process until all missing values are calculated. The tests are performed by removing $5\%$, $10\%$, $15\%$, $20\%$, $25\%$, and $30\%$ of the available data, and the results are compared to autoregressive models. The proposed algorithm has been successfully tested with a maximum of $2,736$ contiguous missing values that account for $19$ consecutive days of a single month; this dataset is a portion of all the missing values when the time-series lacks $30\%$ of all data. The metrics to measure the performance of the algorithms are root-mean-square error (RMSE) and the coefficient of determination ($R^\{2\}$). The results indicate that the proposed algorithm outperforms autoregressive models while preserving the seasonal behavior of the time-series. The STIGMA is also tested with non-weather time-series of beer sales and number of air passengers per month, which also have a cyclical pattern, and the results show the precise imputation of data.},
author = {Rangel-Heras, Eduardo, Zuniga, Pavel, Alanis, Alma Y., Hernandez-Vargas, Esteban A., Sanchez, Oscar D.},
journal = {Kybernetika},
keywords = {contiguous missing values; seasonal patterns; time-series},
language = {eng},
number = {6},
pages = {861-879},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Seasonal time-series imputation of gap missing algorithm (STIGMA)},
url = {http://eudml.org/doc/299203},
volume = {59},
year = {2023},
}
TY - JOUR
AU - Rangel-Heras, Eduardo
AU - Zuniga, Pavel
AU - Alanis, Alma Y.
AU - Hernandez-Vargas, Esteban A.
AU - Sanchez, Oscar D.
TI - Seasonal time-series imputation of gap missing algorithm (STIGMA)
JO - Kybernetika
PY - 2023
PB - Institute of Information Theory and Automation AS CR
VL - 59
IS - 6
SP - 861
EP - 879
AB - This work presents a new approach for the imputation of missing data in weather time-series from a seasonal pattern; the seasonal time-series imputation of gap missing algorithm (STIGMA). The algorithm takes advantage from a seasonal pattern for the imputation of unknown data by averaging available data. We test the algorithm using data measured every $10$ minutes over a period of $365$ days during the year 2010; the variables include global irradiance, diffuse irradiance, ultraviolet irradiance, and temperature, arranged in a matrix of dimensions $52,560$ rows for data points over time and $4$ columns for weather variables. The particularity of this work is that the algorithm is well-suited for the imputation of values when the missing data are presented continuously and in seasonal patterns. The algorithm employs a date-time index to collect available data for the imputation of missing data, repeating the process until all missing values are calculated. The tests are performed by removing $5\%$, $10\%$, $15\%$, $20\%$, $25\%$, and $30\%$ of the available data, and the results are compared to autoregressive models. The proposed algorithm has been successfully tested with a maximum of $2,736$ contiguous missing values that account for $19$ consecutive days of a single month; this dataset is a portion of all the missing values when the time-series lacks $30\%$ of all data. The metrics to measure the performance of the algorithms are root-mean-square error (RMSE) and the coefficient of determination ($R^{2}$). The results indicate that the proposed algorithm outperforms autoregressive models while preserving the seasonal behavior of the time-series. The STIGMA is also tested with non-weather time-series of beer sales and number of air passengers per month, which also have a cyclical pattern, and the results show the precise imputation of data.
LA - eng
KW - contiguous missing values; seasonal patterns; time-series
UR - http://eudml.org/doc/299203
ER -
References
top- Ahn, H., Sun, K., Kim, K. P., , Computers Materials Continua 70 (2022), 767-779. DOI
- Anava, O., Hazan, E., Zeevi, A., International Conference on Machine Learning., Proc. Machine Learning Research, Lille 2015.
- Bashir, F., Wei, H. L., , Neurocomputing 276 (2018), 23-30. DOI
- Batista, G. E. A. P. A., Monard, M. C., , Appl. Artific. Intell. 17 (2003), 519-533. DOI
- Bras, L. P., Menezes, J. C., , IEE Proceedings - Systems Biology, 153 (2006), 105-119. DOI
- Brown, S., Tauler, R., Walczak, B., Comprehensive Chemometrics: Chemical and Biochemical Data Analysis. (Second edition.), Elsevier, Smsterdam 2020.
- Choong, M. K., Charbit, M., Yan, H., , IEEE Trans. Inform. Technol. Biomedicine 13 (2009), 131-137. DOI
- Dan, E. L., Dinşoreanu, M., Mureşan, R. C., 2020 IEEE International Conference on Automation, Quality and Testing, Robotics (AQTR)., IEEE, London 2020.
- Dunsmuir, W., Robinson, P. M., , J. Amer. Statist. Assoc. 76 (1981), 560-568. DOI
- Folch-Fortuny, A., Arteaga, F., Ferrer, A., , BMC Bioinformatics 16 (2015), 1-12. DOI
- Folch-Fortuny, A., Arteaga, F., Ferrer, A., , Chemometr. Intell. Labor. Systems 146 (2015), 77-88. DOI
- Folch-Fortuny, A., Arteaga, F., Ferrer, A., , Chemometr. Intell. Labor. Systems 154 (2016), 93-100. DOI
- González-Martíneza, J. M., Noord, O. E. de, Ferrer, A., , J. Chemometr. 28 (2014), 462-475. DOI
- Hui, D., Wan, S., Su, B, Katul, G., Monson, R., Luo, Y., , Agricultur. Forest Meteorology 121 (2004), 93-111. DOI
- Junger, W. L., Leon, A. Ponce de, , Atmosph. Environment 102 (2015), 96-104. DOI
- Liu, S., Molenaar, P. C. M., , Behavior Res. Methods 46 (2014), 1138-1148. DOI
- Magán-Carrión, R., Pulido-Pulido, F., Camacho, J., García-Teodoro, P., , J. Commun. 8 (2013), 738-750. DOI
- Makridakis, S., Wheelwright, S. C., Hyndman, R. J., Forecasting: Methods and Applications. (Third edition.), Wiley, India 2008.
- Montgomery, D. C., Statistical Quality Control. (Sixth edition.), Wiley, New York 2005.
- Murad, H., Dankner, R., Berlin, A., Olmer, L., Freedman, L. S., , Statist. Methods Medical Res. 29 (2020), 2074-2086. MR4128979DOI
- Neves, D. T., Alves, J., Naik, M. G., Proenca, A. J., Prasser, F., , J. Comput. Sci. 61 (2022), 101640. DOI
- Noor, N. M., Bakri-Abdullah, M. M. Al, Yahaya, A. Shukri, Ramli, N. A., Comparison of Linear Interpolation Method and Mean Method to Replace the Missing Values in Environmental Data Set., Trans Tech Publications, Switzerland 2014.
- Pedreschi, R., Hertog, M. L. A. T. M., Carpentier, S. C., Lammertyn, J., Robben, J., Noben, J. P., Panis, B., Swennen, R., Nicola, B. M., , Proteomics 29 (2008), 1371-1383. DOI
- Quevedo, J., Puig, V., Cembrano, G., Aguilar, J., Isaza, C., Saporta, D., Benito, G., Hedo, M., Molina, A., , IFAC Proc. Vol. 39 (2006), 1181-1186. DOI
- Sun, Y., Li, J., Xu, Y., Zhang, T., Wang, X., , Expert Systems Appl. 227 (2023), 120-201. MR4523179DOI
- Zarzo, M., Martí, P., , Appl. Energy 88 (2011), 2775-2784. DOI
- Zhang, Z., , AME Publ. 4 (2016), 1-8. DOI
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.