A new block triangular preconditioner for three-by-three block saddle-point problem

Jun Li; Xiangtuan Xiong

Applications of Mathematics (2024)

  • Issue: 1, page 67-91
  • ISSN: 0862-7940

Abstract

top
In this paper, to solve the three-by-three block saddle-point problem, a new block triangular (NBT) preconditioner is established, which can effectively avoid the solving difficulty that the coefficient matrices of linear subsystems are Schur complement matrices when the block preconditioner is applied to the Krylov subspace method. Theoretical analysis shows that the iteration method produced by the NBT preconditioner is unconditionally convergent. Besides, some spectral properties are also discussed. Finally, numerical experiments are provided to show the effectiveness of the NBT preconditioner.

How to cite

top

Li, Jun, and Xiong, Xiangtuan. "A new block triangular preconditioner for three-by-three block saddle-point problem." Applications of Mathematics (2024): 67-91. <http://eudml.org/doc/299204>.

@article{Li2024,
abstract = {In this paper, to solve the three-by-three block saddle-point problem, a new block triangular (NBT) preconditioner is established, which can effectively avoid the solving difficulty that the coefficient matrices of linear subsystems are Schur complement matrices when the block preconditioner is applied to the Krylov subspace method. Theoretical analysis shows that the iteration method produced by the NBT preconditioner is unconditionally convergent. Besides, some spectral properties are also discussed. Finally, numerical experiments are provided to show the effectiveness of the NBT preconditioner.},
author = {Li, Jun, Xiong, Xiangtuan},
journal = {Applications of Mathematics},
keywords = {three-by-three block saddle-point problems; matrix splitting; convergence; preconditioning; GMRES method},
language = {eng},
number = {1},
pages = {67-91},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {A new block triangular preconditioner for three-by-three block saddle-point problem},
url = {http://eudml.org/doc/299204},
year = {2024},
}

TY - JOUR
AU - Li, Jun
AU - Xiong, Xiangtuan
TI - A new block triangular preconditioner for three-by-three block saddle-point problem
JO - Applications of Mathematics
PY - 2024
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
IS - 1
SP - 67
EP - 91
AB - In this paper, to solve the three-by-three block saddle-point problem, a new block triangular (NBT) preconditioner is established, which can effectively avoid the solving difficulty that the coefficient matrices of linear subsystems are Schur complement matrices when the block preconditioner is applied to the Krylov subspace method. Theoretical analysis shows that the iteration method produced by the NBT preconditioner is unconditionally convergent. Besides, some spectral properties are also discussed. Finally, numerical experiments are provided to show the effectiveness of the NBT preconditioner.
LA - eng
KW - three-by-three block saddle-point problems; matrix splitting; convergence; preconditioning; GMRES method
UR - http://eudml.org/doc/299204
ER -

References

top
  1. Abdolmaleki, M., Karimi, S., Salkuyeh, D. K., 10.1007/s00009-021-01973-5, Mediterr. J. Math. 19 (2022), Article ID 43, 15 pages. (2022) Zbl1481.65048MR4371180DOI10.1007/s00009-021-01973-5
  2. Aslani, H., Salkuyeh, D. K., Semi-convergence of the APSS method for a class of nonsymmetric three-by-three singular saddle point problems, Available at https://arxiv.org/abs/2208.00814 (2022), 17 pages. (2022) MR4591480
  3. Aslani, H., Salkuyeh, D. K., Beik, F. P. A., 10.2298/FIL2115181A, Filomat 15 (2021), 5181-5194. (2021) MR4394237DOI10.2298/FIL2115181A
  4. Cao, Y., 10.1016/j.aml.2019.04.006, Appl. Math. Lett. 96 (2019), 40-46. (2019) Zbl07111438MR3946364DOI10.1016/j.aml.2019.04.006
  5. Cao, Y., 10.1016/j.cam.2020.112787, J. Comput. Appl. Math. 374 (2020), Article ID 112787, 15 pages. (2020) Zbl1434.65087MR4067982DOI10.1016/j.cam.2020.112787
  6. Degond, P., Raviart, P.-A., 10.1515/form.1992.4.13, Forum Math. 4 (1992), 13-44. (1992) Zbl0755.35137MR1142472DOI10.1515/form.1992.4.13
  7. Elman, H. C., Ramage, A., Silvester, D. J., 10.1145/1236463.1236469, ACM Trans. Math. Softw. 33 (2007), Article ID 14, 18 pages. (2007) Zbl1365.65326MR2326956DOI10.1145/1236463.1236469
  8. Han, D., Yuan, X., 10.1137/120886753, SIAM J. Numer. Anal. 51 (2013), 3446-3457. (2013) Zbl1285.90033MR3143838DOI10.1137/120886753
  9. Hu, K., Xu, J., 10.1090/mcom/3341, Math. Comput. 88 (2019), 553-581. (2019) Zbl1405.65151MR3882276DOI10.1090/mcom/3341
  10. Huang, N., 10.1007/s11075-019-00863-y, Numer. Algorithms 85 (2020), 1233-1254. (2020) Zbl1455.65049MR4190815DOI10.1007/s11075-019-00863-y
  11. Huang, N., Dai, Y.-H., Hu, Q., 10.1002/nla.2265, Numer. Linear Algebra Appl. 26 (2019), Article ID e2265, 26 pages. (2019) Zbl1463.65046MR4033762DOI10.1002/nla.2265
  12. Huang, N., Ma, C.-F., 10.1007/s11075-018-0555-6, Numer. Algorithms 81 (2019), 421-444. (2019) Zbl1454.65019MR3953154DOI10.1007/s11075-018-0555-6
  13. Huang, Y.-M., 10.1016/j.cam.2013.01.023, J. Comput. Appl. Math. 255 (2014), 142-149. (2014) Zbl1291.65100MR3093411DOI10.1016/j.cam.2013.01.023
  14. Huang, Z.-G., Wang, L.-G., Xu, Z., Cui, J.-J., 10.1016/j.amc.2020.125110, Appl. Math. Comput. 376 (2020), Article ID 125110, 26 pages. (2020) Zbl1474.65063MR4068949DOI10.1016/j.amc.2020.125110
  15. Meng, L., Li, J., Miao, S.-X., 10.1007/s13160-021-00467-x, Japan J. Ind. Appl. Math. 38 (2021), 979-998. (2021) Zbl1483.65048MR4304920DOI10.1007/s13160-021-00467-x
  16. Monk, P., 10.1137/0729045, SIAM J. Numer. Anal. 29 (1992), 714-729. (1992) Zbl0761.65097MR1163353DOI10.1137/0729045
  17. Saad, Y., 10.1137/1.9780898718003, SIAM, Philadephia (2003). (2003) Zbl1031.65046MR1990645DOI10.1137/1.9780898718003
  18. Salkuyeh, D. K., Aslani, H., Liang, Z.-Z., An alternating positive semidefinite splitting preconditioner for the three-by-three block saddle point problems, Math. Commun. 26 (2021), 177-195. (2021) Zbl07424441MR4297389
  19. Wang, L., Zhang, K., 10.4236/oalib.1105968, Open Access Library J. 6 (2019), Article ID e5968, 13 pages. (2019) MR3615979DOI10.4236/oalib.1105968
  20. Wang, N.-N., Li, J.-C., 10.1016/j.cam.2021.113959, J. Comput. Appl. Math. 405 (2022), Article ID 113959, 15 pages. (2022) Zbl1480.65067MR4355119DOI10.1016/j.cam.2021.113959
  21. Xie, X., Li, H.-B., 10.1016/j.camwa.2020.01.022, Comput. Math. Appl. 79 (2020), 3289-3296. (2020) Zbl1452.65054MR4094767DOI10.1016/j.camwa.2020.01.022
  22. Young, D. M., 10.1016/c2013-0-11733-3, Computer Science and Applied Mathematics. Academic Press, New York (1971). (1971) Zbl0231.65034MR0305568DOI10.1016/c2013-0-11733-3
  23. Zhang, N., Li, R.-X., Li, J., 10.1007/s40314-022-01944-w, Comput. Appl. Math. 41 (2022), Articles ID 261, 16 pages. (2022) Zbl1513.65061MR4458078DOI10.1007/s40314-022-01944-w
  24. Zhu, J.-L., Wu, Y.-J., Yang, A.-L., 10.1007/s11075-021-01142-5, Numer. Algorithms 89 (2022), 987-1006. (2022) Zbl1484.65058MR4376676DOI10.1007/s11075-021-01142-5

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.