A new block triangular preconditioner for three-by-three block saddle-point problem
Applications of Mathematics (2024)
- Volume: 69, Issue: 1, page 67-91
- ISSN: 0862-7940
Access Full Article
topAbstract
topHow to cite
topLi, Jun, and Xiong, Xiangtuan. "A new block triangular preconditioner for three-by-three block saddle-point problem." Applications of Mathematics 69.1 (2024): 67-91. <http://eudml.org/doc/299204>.
@article{Li2024,
abstract = {In this paper, to solve the three-by-three block saddle-point problem, a new block triangular (NBT) preconditioner is established, which can effectively avoid the solving difficulty that the coefficient matrices of linear subsystems are Schur complement matrices when the block preconditioner is applied to the Krylov subspace method. Theoretical analysis shows that the iteration method produced by the NBT preconditioner is unconditionally convergent. Besides, some spectral properties are also discussed. Finally, numerical experiments are provided to show the effectiveness of the NBT preconditioner.},
author = {Li, Jun, Xiong, Xiangtuan},
journal = {Applications of Mathematics},
keywords = {three-by-three block saddle-point problems; matrix splitting; convergence; preconditioning; GMRES method},
language = {eng},
number = {1},
pages = {67-91},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {A new block triangular preconditioner for three-by-three block saddle-point problem},
url = {http://eudml.org/doc/299204},
volume = {69},
year = {2024},
}
TY - JOUR
AU - Li, Jun
AU - Xiong, Xiangtuan
TI - A new block triangular preconditioner for three-by-three block saddle-point problem
JO - Applications of Mathematics
PY - 2024
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 69
IS - 1
SP - 67
EP - 91
AB - In this paper, to solve the three-by-three block saddle-point problem, a new block triangular (NBT) preconditioner is established, which can effectively avoid the solving difficulty that the coefficient matrices of linear subsystems are Schur complement matrices when the block preconditioner is applied to the Krylov subspace method. Theoretical analysis shows that the iteration method produced by the NBT preconditioner is unconditionally convergent. Besides, some spectral properties are also discussed. Finally, numerical experiments are provided to show the effectiveness of the NBT preconditioner.
LA - eng
KW - three-by-three block saddle-point problems; matrix splitting; convergence; preconditioning; GMRES method
UR - http://eudml.org/doc/299204
ER -
References
top- Abdolmaleki, M., Karimi, S., Salkuyeh, D. K., 10.1007/s00009-021-01973-5, Mediterr. J. Math. 19 (2022), Article ID 43, 15 pages. (2022) Zbl1481.65048MR4371180DOI10.1007/s00009-021-01973-5
- Aslani, H., Salkuyeh, D. K., Semi-convergence of the APSS method for a class of nonsymmetric three-by-three singular saddle point problems, Available at https://arxiv.org/abs/2208.00814 (2022), 17 pages. (2022) MR4591480
- Aslani, H., Salkuyeh, D. K., Beik, F. P. A., 10.2298/FIL2115181A, Filomat 15 (2021), 5181-5194. (2021) MR4394237DOI10.2298/FIL2115181A
- Cao, Y., 10.1016/j.aml.2019.04.006, Appl. Math. Lett. 96 (2019), 40-46. (2019) Zbl07111438MR3946364DOI10.1016/j.aml.2019.04.006
- Cao, Y., 10.1016/j.cam.2020.112787, J. Comput. Appl. Math. 374 (2020), Article ID 112787, 15 pages. (2020) Zbl1434.65087MR4067982DOI10.1016/j.cam.2020.112787
- Degond, P., Raviart, P.-A., 10.1515/form.1992.4.13, Forum Math. 4 (1992), 13-44. (1992) Zbl0755.35137MR1142472DOI10.1515/form.1992.4.13
- Elman, H. C., Ramage, A., Silvester, D. J., 10.1145/1236463.1236469, ACM Trans. Math. Softw. 33 (2007), Article ID 14, 18 pages. (2007) Zbl1365.65326MR2326956DOI10.1145/1236463.1236469
- Han, D., Yuan, X., 10.1137/120886753, SIAM J. Numer. Anal. 51 (2013), 3446-3457. (2013) Zbl1285.90033MR3143838DOI10.1137/120886753
- Hu, K., Xu, J., 10.1090/mcom/3341, Math. Comput. 88 (2019), 553-581. (2019) Zbl1405.65151MR3882276DOI10.1090/mcom/3341
- Huang, N., 10.1007/s11075-019-00863-y, Numer. Algorithms 85 (2020), 1233-1254. (2020) Zbl1455.65049MR4190815DOI10.1007/s11075-019-00863-y
- Huang, N., Dai, Y.-H., Hu, Q., 10.1002/nla.2265, Numer. Linear Algebra Appl. 26 (2019), Article ID e2265, 26 pages. (2019) Zbl1463.65046MR4033762DOI10.1002/nla.2265
- Huang, N., Ma, C.-F., 10.1007/s11075-018-0555-6, Numer. Algorithms 81 (2019), 421-444. (2019) Zbl1454.65019MR3953154DOI10.1007/s11075-018-0555-6
- Huang, Y.-M., 10.1016/j.cam.2013.01.023, J. Comput. Appl. Math. 255 (2014), 142-149. (2014) Zbl1291.65100MR3093411DOI10.1016/j.cam.2013.01.023
- Huang, Z.-G., Wang, L.-G., Xu, Z., Cui, J.-J., 10.1016/j.amc.2020.125110, Appl. Math. Comput. 376 (2020), Article ID 125110, 26 pages. (2020) Zbl1474.65063MR4068949DOI10.1016/j.amc.2020.125110
- Meng, L., Li, J., Miao, S.-X., 10.1007/s13160-021-00467-x, Japan J. Ind. Appl. Math. 38 (2021), 979-998. (2021) Zbl1483.65048MR4304920DOI10.1007/s13160-021-00467-x
- Monk, P., 10.1137/0729045, SIAM J. Numer. Anal. 29 (1992), 714-729. (1992) Zbl0761.65097MR1163353DOI10.1137/0729045
- Saad, Y., 10.1137/1.9780898718003, SIAM, Philadephia (2003). (2003) Zbl1031.65046MR1990645DOI10.1137/1.9780898718003
- Salkuyeh, D. K., Aslani, H., Liang, Z.-Z., An alternating positive semidefinite splitting preconditioner for the three-by-three block saddle point problems, Math. Commun. 26 (2021), 177-195. (2021) Zbl07424441MR4297389
- Wang, L., Zhang, K., 10.4236/oalib.1105968, Open Access Library J. 6 (2019), Article ID e5968, 13 pages. (2019) MR3615979DOI10.4236/oalib.1105968
- Wang, N.-N., Li, J.-C., 10.1016/j.cam.2021.113959, J. Comput. Appl. Math. 405 (2022), Article ID 113959, 15 pages. (2022) Zbl1480.65067MR4355119DOI10.1016/j.cam.2021.113959
- Xie, X., Li, H.-B., 10.1016/j.camwa.2020.01.022, Comput. Math. Appl. 79 (2020), 3289-3296. (2020) Zbl1452.65054MR4094767DOI10.1016/j.camwa.2020.01.022
- Young, D. M., 10.1016/c2013-0-11733-3, Computer Science and Applied Mathematics. Academic Press, New York (1971). (1971) Zbl0231.65034MR0305568DOI10.1016/c2013-0-11733-3
- Zhang, N., Li, R.-X., Li, J., 10.1007/s40314-022-01944-w, Comput. Appl. Math. 41 (2022), Articles ID 261, 16 pages. (2022) Zbl1513.65061MR4458078DOI10.1007/s40314-022-01944-w
- Zhu, J.-L., Wu, Y.-J., Yang, A.-L., 10.1007/s11075-021-01142-5, Numer. Algorithms 89 (2022), 987-1006. (2022) Zbl1484.65058MR4376676DOI10.1007/s11075-021-01142-5
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.