Asymptotic modeling of the transient response of nonlinear Kelvin-Voigt viscoelastic thin plates with Norton or Tresca friction by Trotter theory

Yotsawat Terapabkajornded; Somsak Orankitjaroen; Christian Licht; Thibaut Weller

Applications of Mathematics (2024)

  • Volume: 69, Issue: 1, page 25-48
  • ISSN: 0862-7940

Abstract

top
We study the dynamic response of a thin viscoelastic plate made of a nonlinear Kelvin-Voigt material in bilateral contact with a rigid body along a part of its lateral boundary with Norton or Tresca friction. We opt for a direct use of the Trotter theory of convergence of semi-groups of operators acting on variable spaces. Depending on the various relative behaviors of the physical and geometrical data of the problem, the asymptotic analysis of its unique solution leads to different limit models whose properties are detailed. We highlight the appearance of an additional state variable that allows us to write these limit systems of equations in the same form as the genuine problem.

How to cite

top

Terapabkajornded, Yotsawat, et al. "Asymptotic modeling of the transient response of nonlinear Kelvin-Voigt viscoelastic thin plates with Norton or Tresca friction by Trotter theory." Applications of Mathematics 69.1 (2024): 25-48. <http://eudml.org/doc/299207>.

@article{Terapabkajornded2024,
abstract = {We study the dynamic response of a thin viscoelastic plate made of a nonlinear Kelvin-Voigt material in bilateral contact with a rigid body along a part of its lateral boundary with Norton or Tresca friction. We opt for a direct use of the Trotter theory of convergence of semi-groups of operators acting on variable spaces. Depending on the various relative behaviors of the physical and geometrical data of the problem, the asymptotic analysis of its unique solution leads to different limit models whose properties are detailed. We highlight the appearance of an additional state variable that allows us to write these limit systems of equations in the same form as the genuine problem.},
author = {Terapabkajornded, Yotsawat, Orankitjaroen, Somsak, Licht, Christian, Weller, Thibaut},
journal = {Applications of Mathematics},
keywords = {thin viscoelastic plate; Norton or Tresca friction; transient problem; multivalued operator; nonlinear semigroup of operators; Trotter's theory of convergence of semi-groups},
language = {eng},
number = {1},
pages = {25-48},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Asymptotic modeling of the transient response of nonlinear Kelvin-Voigt viscoelastic thin plates with Norton or Tresca friction by Trotter theory},
url = {http://eudml.org/doc/299207},
volume = {69},
year = {2024},
}

TY - JOUR
AU - Terapabkajornded, Yotsawat
AU - Orankitjaroen, Somsak
AU - Licht, Christian
AU - Weller, Thibaut
TI - Asymptotic modeling of the transient response of nonlinear Kelvin-Voigt viscoelastic thin plates with Norton or Tresca friction by Trotter theory
JO - Applications of Mathematics
PY - 2024
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 69
IS - 1
SP - 25
EP - 48
AB - We study the dynamic response of a thin viscoelastic plate made of a nonlinear Kelvin-Voigt material in bilateral contact with a rigid body along a part of its lateral boundary with Norton or Tresca friction. We opt for a direct use of the Trotter theory of convergence of semi-groups of operators acting on variable spaces. Depending on the various relative behaviors of the physical and geometrical data of the problem, the asymptotic analysis of its unique solution leads to different limit models whose properties are detailed. We highlight the appearance of an additional state variable that allows us to write these limit systems of equations in the same form as the genuine problem.
LA - eng
KW - thin viscoelastic plate; Norton or Tresca friction; transient problem; multivalued operator; nonlinear semigroup of operators; Trotter's theory of convergence of semi-groups
UR - http://eudml.org/doc/299207
ER -

References

top
  1. Allaire, G., 10.1137/0523084, SIAM J. Math. Anal. 23 (1992), 1482-1518. (1992) Zbl0770.35005MR1185639DOI10.1137/0523084
  2. Bobrowski, A., 10.1017/CBO9781316480663, New Mathematical Monographs 30. Cambridge University Press, Cambridge (2016). (2016) Zbl1345.47001MR3526064DOI10.1017/CBO9781316480663
  3. Brézis, H., 10.1016/s0304-0208(08)x7125-71, North-Holland Mathematics Studies 5. North-Holland, Amsterdam (1973), French. (1973) Zbl0252.47055MR0348562DOI10.1016/s0304-0208(08)x7125-71
  4. Ciarlet, P. G., Mathematical Elasticity. Vol. 2. Theory of Plates, Studies in Mathematics and Its Applications 27. North Holland, Amsterdam (1997). (1997) Zbl0888.73001MR1477663
  5. Francfort, G., Leguillon, D., Suquet, P., Homogénéisation de milieux viscoélastiques linéaires de Kelvin-Voigt, C. R. Acad. Sci., Paris, Sér. I 296 (1983), 287-290 French. (1983) Zbl0534.73031MR0693795
  6. Gaudiello, A., Monneau, R., Mossino, J., Murat, F., Sili, A., 10.1051/cocv:2007036, ESAIM, Control Optim. Calc. Var. 13 (2007), 419-457. (2007) Zbl1133.35322MR2329170DOI10.1051/cocv:2007036
  7. Iosifescu, O., Licht, C., 10.3233/ASY-211717, Asymptotic Anal. 128 (2022), 555-570. (2022) Zbl1504.35536MR4438595DOI10.3233/ASY-211717
  8. Iosifescu, O., Licht, C., Michaille, G., 10.1007/s10659-009-9198-0, J. Elasticity 96 (2009), 57-79. (2009) Zbl1273.74172MR2504825DOI10.1007/s10659-009-9198-0
  9. Licht, C., 10.1016/j.crme.2013.06.005, C. R., Méc., Acad. Sci. Paris 341 (2013), 697-700. (2013) DOI10.1016/j.crme.2013.06.005
  10. Licht, C., Weller, T., 10.3934/dcdss.2019114, Discrete Contin. Dyn. Syst., Ser. S 12 (2019), 1709-1741. (2019) Zbl1462.82030MR3984717DOI10.3934/dcdss.2019114
  11. Licht, C., Weller, T., 10.1016/j.crme.2019.07.001, C. R., Méc., Acad. Sci. Paris 347 (2019), 555-560. (2019) DOI10.1016/j.crme.2019.07.001
  12. Migórski, S., Ochal, A., Sofonea, M., 10.3934/dcdsb.2011.15.687, Discrete Contin. Dyn. Syst., Ser. B 15 (2011), 687-705. (2011) Zbl1287.74026MR2774134DOI10.3934/dcdsb.2011.15.687
  13. Nguetseng, G., 10.1137/0520043, SIAM J. Math. Anal. 20 (1989), 608-623. (1989) Zbl0688.35007MR0990867DOI10.1137/0520043
  14. Terapabkajornded, Y., Orankitjaroen, S., Licht, C., 10.1186/s13662-019-2104-6, Adv. Difference Equ. 2019 (2019), Article ID 186, 9 pages. (2019) Zbl1459.74023MR3950287DOI10.1186/s13662-019-2104-6
  15. Trotter, H. F., 10.2140/pjm.1958.8.887, Pac. J. Math. 8 (1958), 887-919. (1958) Zbl0099.10302MR0103420DOI10.2140/pjm.1958.8.887
  16. Zhikov, V. V., Pastukhova, S. E., 10.1007/s10688-007-0024-9, Funct. Anal. Appl. 41 (2007), 264-270. (2007) Zbl1158.47027MR2411603DOI10.1007/s10688-007-0024-9

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.