Junction of elastic plates and beams

Antonio Gaudiello; Régis Monneau; Jacqueline Mossino; François Murat; Ali Sili

ESAIM: Control, Optimisation and Calculus of Variations (2007)

  • Volume: 13, Issue: 3, page 419-457
  • ISSN: 1292-8119

Abstract

top
We consider the linearized elasticity system in a multidomain of 𝐑 3 . This multidomain is the union of a horizontal plate with fixed cross section and small thickness ε, and of a vertical beam with fixed height and small cross section of radius r ε . The lateral boundary of the plate and the top of the beam are assumed to be clamped. When ε and r ε tend to zero simultaneously, with r ε ε 2 , we identify the limit problem. This limit problem involves six junction conditions.

How to cite

top

Gaudiello, Antonio, et al. "Junction of elastic plates and beams." ESAIM: Control, Optimisation and Calculus of Variations 13.3 (2007): 419-457. <http://eudml.org/doc/249992>.

@article{Gaudiello2007,
abstract = { We consider the linearized elasticity system in a multidomain of $\{\bf R\}^3$. This multidomain is the union of a horizontal plate with fixed cross section and small thickness ε, and of a vertical beam with fixed height and small cross section of radius $r^\{\varepsilon\}$. The lateral boundary of the plate and the top of the beam are assumed to be clamped. When ε and $r^\{\varepsilon\}$ tend to zero simultaneously, with $r^\{\varepsilon\}\gg \varepsilon^2$, we identify the limit problem. This limit problem involves six junction conditions. },
author = {Gaudiello, Antonio, Monneau, Régis, Mossino, Jacqueline, Murat, François, Sili, Ali},
journal = {ESAIM: Control, Optimisation and Calculus of Variations},
keywords = {Junctions; thin structures; plates; beams; linear elasticity; asymptotic analysis; multidomain},
language = {eng},
month = {7},
number = {3},
pages = {419-457},
publisher = {EDP Sciences},
title = {Junction of elastic plates and beams},
url = {http://eudml.org/doc/249992},
volume = {13},
year = {2007},
}

TY - JOUR
AU - Gaudiello, Antonio
AU - Monneau, Régis
AU - Mossino, Jacqueline
AU - Murat, François
AU - Sili, Ali
TI - Junction of elastic plates and beams
JO - ESAIM: Control, Optimisation and Calculus of Variations
DA - 2007/7//
PB - EDP Sciences
VL - 13
IS - 3
SP - 419
EP - 457
AB - We consider the linearized elasticity system in a multidomain of ${\bf R}^3$. This multidomain is the union of a horizontal plate with fixed cross section and small thickness ε, and of a vertical beam with fixed height and small cross section of radius $r^{\varepsilon}$. The lateral boundary of the plate and the top of the beam are assumed to be clamped. When ε and $r^{\varepsilon}$ tend to zero simultaneously, with $r^{\varepsilon}\gg \varepsilon^2$, we identify the limit problem. This limit problem involves six junction conditions.
LA - eng
KW - Junctions; thin structures; plates; beams; linear elasticity; asymptotic analysis; multidomain
UR - http://eudml.org/doc/249992
ER -

References

top
  1. E. Acerbi, G. Buttazzo and D. Percivale, A variational definition of the strain energy for an elastic string. J. Elasticity25 (1991) 137–148.  
  2. D.R. Adams and L.I. Hedberg, Fonctions Spaces and Potential Theory. Springer Verlag, Berlin (1996).  
  3. G. Anzellotti, S. Baldo and D. Percivale, Dimension reduction in variational problems, asymptotic development in Γ -convergence and thin structures in elasticity. Asymptot. Anal.9 (1994) 61–100.  
  4. D. Caillerie, Thin elastic and periodic plates. Math. Methods Appl. Sci.6 (1984) 159–191.  
  5. P.G. Ciarlet, Plates and Junctions in Elastic Multi-Structures: An Asymptotic Analysis. Masson, Paris (1990).  
  6. P.G. Ciarlet, Mathematical Elasticity, Volume II: Theory of Plates. North-Holland, Amsterdam (1997).  
  7. P.G. Ciarlet and P. Destuynder, A justification of the two-dimensional linear plate model. J. Mécanique18 (1979) 315–344.  
  8. A. Cimetière, G. Geymonat, H. Le Dret, A. Raoult, Z. Tutek, Asymptotic theory and analysis for displacements and stress distribution in nonlinear elastic straight slender rods. J. Elasticity19 (1988) 111–161.  
  9. D. Cioranescu and J. Saint Jean Paulin, Homogenization of Reticulated Structures. Springer-Verlag, New York (1999).  
  10. M. Dauge and I. Gruais, Asymptotics of arbitrary order for a thin elastic clamped plate, I: Optimal error estimates. Asymptot. Anal.13 (1996) 167–197.  
  11. G. Friesecke, R.D. James and S. Müller, A theorem on geometric rigidity and the derivation of nonlinear plate theory from three-dimensional elasticity. Comm. Pure Appl. Math.55 (2002) 1461–1506.  
  12. G. Friesecke, R.D. James and S. Müller, A hierarchy of plate models derived from nonlinear elasticity by gamma-convergence. Arch. Rat. Mech. Anal.180 (2006) 183–236.  
  13. A. Gaudiello, B. Gustafsson, C. Lefter and J. Mossino, Asymptotic analysis of a class of minimization problems in a thin multidomain. Calc. Var. Part. Diff. Eq.15 (2002) 181–201.  
  14. A. Gaudiello, B. Gustafsson, C. Lefter and J. Mossino, Asymptotic analysis for monotone quasilinear problems in thin multidomains. Diff. Int. Eq.15 (2002) 623–640.  
  15. A. Gaudiello, R. Monneau, J. Mossino, F. Murat and A. Sili, On the junction of elastic plates and beams. C.R. Acad. Sci. Paris Sér. I335 (2002) 717–722.  
  16. A. Gaudiello and E. Zappale, Junction in a thin multidomain for a fourth order problem. M3AS: Math. Models Methods Appl. Sci.16 (2006) 1887–1918.  
  17. I. Gruais, Modélisation de la jonction entre une plaque et une poutre en élasticité linéarisée. RAIRO: Modél. Math. Anal. Numér.27 (1993) 77–105.  
  18. I. Gruais, Modeling of the junction between a plate and a rod in nonlinear elasticity. Asymptotic Anal.7 (1993) 179–194.  
  19. V.A. Kozlov, V.G. Ma'zya and A.B. Movchan, Asymptotic representation of elastic fields in a multi-structure. Asymptot. Anal.11 (1995) 343–415.  
  20. H. Le Dret, Problèmes Variationnels dans les Multi-domaines: Modélisation des Jonctions et Applications. Masson, Paris (1991).  
  21. H. Le Dret, Convergence of displacements and stresses in linearly elastic slender rods as the thickness goes to zero. Asymptot. Anal.10 (1995) 367–402.  
  22. H. Le Dret and A. Raoult, The nonlinear membrane model as variational limit of nonlinear three-dimensional elasticity. J. Math. Pures Appl.74 (1995) 549–578.  
  23. H. Le Dret and A. Raoult, The membrane shell model in nonlinear elasticity: a variational asymptotic derivation. J. Nonlinear Sci.6 (1996) 59–84.  
  24. R. Monneau, F. Murat and A. Sili, Error estimate for the transition 3d-1d in anisotropic heterogeneous linearized elasticity. To appear.  
  25. M.G. Mora and S. Müller, Derivation of the nonlinear bending-torsion theory for inextensible rods by Γ -convergence. Calc. Var. Part. Diff. Eq.18 (2003) 287–305.  
  26. M.G. Mora and S. Müller, A nonlinear model for inextensible rods as a low energy Γ -limit of three-dimensional nonlinear elasticity. Ann. Inst. H. Poincaré Anal. Non Linéaire21 (2004) 271–293.  
  27. F. Murat and A. Sili, Comportement asymptotique des solutions du sytème de l'élasticité linéarisée anisotrope hétérogène dans des cylindres minces. C.R. Acad. Sci. Paris Sér. I328 (1999) 179–184.  
  28. F. Murat and A. Sili, Anisotropic, heterogeneous, linearized elasticity problems in thin cylinders. To appear.  
  29. O.A. Oleinik, A.S. Shamaev and G.A. Yosifian, Mathematical Problems in Elasticity and Homogenization. North-Holland, Amsterdam (1992).  
  30. D. Percivale, Thin elastic beams: the variational approach to St. Venant's problem. Asymptot. Anal.20 (1999) 39–60.  
  31. L. Trabucho and J.M. Viano, Mathematical Modelling of Rods, Handbook of Numerical Analysis4. North-Holland, Amsterdam (1996).  

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.