Hall algebras of two equivalent extriangulated categories
Shiquan Ruan; Li Wang; Haicheng Zhang
Czechoslovak Mathematical Journal (2024)
- Issue: 1, page 95-113
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topRuan, Shiquan, Wang, Li, and Zhang, Haicheng. "Hall algebras of two equivalent extriangulated categories." Czechoslovak Mathematical Journal (2024): 95-113. <http://eudml.org/doc/299211>.
@article{Ruan2024,
abstract = {For any positive integer $n$, let $A_n$ be a linearly oriented quiver of type $A$ with $n$ vertices. It is well-known that the quotient of an exact category by projective-injectives is an extriangulated category. We show that there exists an extriangulated equivalence between the extriangulated categories $\mathcal \{M\}_\{n+1\}$ and $\mathcal \{F\}_n$, where $\mathcal \{M\}_\{n+1\}$ and $\mathcal \{F\}_n$ are the two extriangulated categories corresponding to the representation category of $A_\{n+1\}$ and the morphism category of projective representations of $A_n$, respectively. As a by-product, the Hall algebras of $\mathcal \{M\}_\{n+1\}$ and $\mathcal \{F\}_n$ are isomorphic. As an application, we use the Hall algebra of $\mathcal \{M\}_\{2n+1\}$ to relate with the quantum cluster algebras of type $A_\{2n\}$.},
author = {Ruan, Shiquan, Wang, Li, Zhang, Haicheng},
journal = {Czechoslovak Mathematical Journal},
keywords = {extriangulated category; extriangulated equivalence; Hall algebra; quantum cluster algebra},
language = {eng},
number = {1},
pages = {95-113},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Hall algebras of two equivalent extriangulated categories},
url = {http://eudml.org/doc/299211},
year = {2024},
}
TY - JOUR
AU - Ruan, Shiquan
AU - Wang, Li
AU - Zhang, Haicheng
TI - Hall algebras of two equivalent extriangulated categories
JO - Czechoslovak Mathematical Journal
PY - 2024
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
IS - 1
SP - 95
EP - 113
AB - For any positive integer $n$, let $A_n$ be a linearly oriented quiver of type $A$ with $n$ vertices. It is well-known that the quotient of an exact category by projective-injectives is an extriangulated category. We show that there exists an extriangulated equivalence between the extriangulated categories $\mathcal {M}_{n+1}$ and $\mathcal {F}_n$, where $\mathcal {M}_{n+1}$ and $\mathcal {F}_n$ are the two extriangulated categories corresponding to the representation category of $A_{n+1}$ and the morphism category of projective representations of $A_n$, respectively. As a by-product, the Hall algebras of $\mathcal {M}_{n+1}$ and $\mathcal {F}_n$ are isomorphic. As an application, we use the Hall algebra of $\mathcal {M}_{2n+1}$ to relate with the quantum cluster algebras of type $A_{2n}$.
LA - eng
KW - extriangulated category; extriangulated equivalence; Hall algebra; quantum cluster algebra
UR - http://eudml.org/doc/299211
ER -
References
top- Bautista, R., 10.1081/AGB-200034145, Commun. Algebra 32 (2004), 4303-4331. (2004) Zbl1081.16025MR2102451DOI10.1081/AGB-200034145
- Bennett-Tennenhaus, R., Shah, A., 10.1016/j.jalgebra.2021.01.019, J. Algebra 574 (2021), 514-549. (2021) Zbl1461.18004MR4213630DOI10.1016/j.jalgebra.2021.01.019
- Berenstein, A., Zelevinsky, A., 10.1016/j.aim.2004.08.003, Adv. Math. 195 (2005), 405-455. (2005) Zbl1124.20028MR2146350DOI10.1016/j.aim.2004.08.003
- Caldero, P., Keller, B., 10.1007/s00222-008-0111-4, Invent. Math. 172 (2008), 169-211. (2008) Zbl1141.18012MR2385670DOI10.1007/s00222-008-0111-4
- Chaio, C., Pratti, I., Souto-Salorio, M. J., 10.1007/s10468-016-9643-2, Algebr. Represent. Theory 20 (2017), 289-311. (2017) Zbl1393.16009MR3638350DOI10.1007/s10468-016-9643-2
- Chen, X., Ding, M., Zhang, H., 10.1093/imrn/rnad172, (to appear) in Int. Math. Res. Not. MR4675077DOI10.1093/imrn/rnad172
- Ding, M., Xu, F., Zhang, H., 10.1007/s00209-020-02465-0, Math. Z. 296 (2020), 945-968. (2020) Zbl1509.17010MR4159816DOI10.1007/s00209-020-02465-0
- Fomin, S., Zelevinsky, A., 10.1090/S0894-0347-01-00385-X, J. Am. Math. Soc. 15 (2002), 497-529. (2002) Zbl1021.16017MR1887642DOI10.1090/S0894-0347-01-00385-X
- Fu, C., Peng, L., Zhang, H., 10.1007/s00029-022-00811-0, Sel. Math., New Ser. 29 (2023), Article ID 4, 29 pages. (2023) Zbl07612807MR4502761DOI10.1007/s00029-022-00811-0
- Gorsky, M., Nakaoka, H., Palu, Y., 10.48550/arXiv.2103.12482, Available at https://arxiv.org/abs/2103.12482 (2021), 51 pages. (2021) DOI10.48550/arXiv.2103.12482
- Hubery, A., 10.1090/conm/406, Trends in Representations Theory of Algebras and Related Topics Contemporary Mathematics 406. AMS, Providence (2006), 51-66. (2006) Zbl1107.16021MR2258041DOI10.1090/conm/406
- Nakaoka, H., Palu, Y., Extriangulated categories, Hovey twin cotorsion pairs and model structures, Cah. Topol. Géom. Différ. Catég. 60 (2019), 117-193. (2019) Zbl1451.18021MR3931945
- Ringel, C. M., 10.1007/BF01231516, Invent. Math. 101 (1990), 583-591. (1990) Zbl0735.16009MR1062796DOI10.1007/BF01231516
- Sheng, J., Xu, F., 10.1142/S1005386712000399, Algebra Colloq. 19 (2012), 533-538. (2012) Zbl1250.18013MR2999262DOI10.1142/S1005386712000399
- Toën, B., 10.1215/S0012-7094-06-13536-6, Duke Math. J. 135 (2006), 587-615. (2006) Zbl1117.18011MR2272977DOI10.1215/S0012-7094-06-13536-6
- Wang, L., Wei, J., Zhang, H., 10.1016/j.jalgebra.2022.07.023, J. Algebra 610 (2022), 366-390. (2022) Zbl1502.18019MR4466102DOI10.1016/j.jalgebra.2022.07.023
- Xiao, J., Xu, F., 10.1215/00127094-2008-021, Duke Math. J. 143 (2008), 357-373. (2008) Zbl1168.18006MR2420510DOI10.1215/00127094-2008-021
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.