Condition numbers of Hessenberg companion matrices
Michael Cox; Kevin N. Vander Meulen; Adam Van Tuyl; Joseph Voskamp
Czechoslovak Mathematical Journal (2024)
- Issue: 1, page 191-209
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topCox, Michael, et al. "Condition numbers of Hessenberg companion matrices." Czechoslovak Mathematical Journal (2024): 191-209. <http://eudml.org/doc/299216>.
@article{Cox2024,
abstract = {The Fiedler matrices are a large class of companion matrices that include the well-known Frobenius companion matrix. The Fiedler matrices are part of a larger class of companion matrices that can be characterized by a Hessenberg form. We demonstrate that the Hessenberg form of the Fiedler companion matrices provides a straight-forward way to compare the condition numbers of these matrices. We also show that there are other companion matrices which can provide a much smaller condition number than any Fiedler companion matrix. We finish by exploring the condition number of a class of matrices obtained from perturbing a Frobenius companion matrix while preserving the characteristic polynomial.},
author = {Cox, Michael, Vander Meulen, Kevin N., Van Tuyl, Adam, Voskamp, Joseph},
journal = {Czechoslovak Mathematical Journal},
keywords = {companion matrix; Fiedler companion matrix; condition number; generalized companion matrix},
language = {eng},
number = {1},
pages = {191-209},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Condition numbers of Hessenberg companion matrices},
url = {http://eudml.org/doc/299216},
year = {2024},
}
TY - JOUR
AU - Cox, Michael
AU - Vander Meulen, Kevin N.
AU - Van Tuyl, Adam
AU - Voskamp, Joseph
TI - Condition numbers of Hessenberg companion matrices
JO - Czechoslovak Mathematical Journal
PY - 2024
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
IS - 1
SP - 191
EP - 209
AB - The Fiedler matrices are a large class of companion matrices that include the well-known Frobenius companion matrix. The Fiedler matrices are part of a larger class of companion matrices that can be characterized by a Hessenberg form. We demonstrate that the Hessenberg form of the Fiedler companion matrices provides a straight-forward way to compare the condition numbers of these matrices. We also show that there are other companion matrices which can provide a much smaller condition number than any Fiedler companion matrix. We finish by exploring the condition number of a class of matrices obtained from perturbing a Frobenius companion matrix while preserving the characteristic polynomial.
LA - eng
KW - companion matrix; Fiedler companion matrix; condition number; generalized companion matrix
UR - http://eudml.org/doc/299216
ER -
References
top- Cox, M., On Conditions Numbers of Companion Matrices: M.Sc. Thesis, McMaster University, Hamilton (2018). (2018)
- Deaett, L., Fischer, J., Garnett, C., Meulen, K. N. Vander, 10.13001/1081-3810.3839, Electron. J. Linear Algebra 35 (2019), 223-247. (2019) Zbl1419.15030MR3982283DOI10.13001/1081-3810.3839
- Terán, F. de, Dopico, F. M., Pérez, J., 10.1016/j.laa.2012.09.020, Linear Algebra Appl. 439 (2013), 944-981. (2013) Zbl1281.15004MR3061748DOI10.1016/j.laa.2012.09.020
- Eastman, B., Kim, I.-J., Shader, B. L., Meulen, K. N. Vander, 10.1016/j.laa.2014.09.010, Linear Algebra Appl. 463 (2014), 255-272. (2014) Zbl1310.15015MR3262399DOI10.1016/j.laa.2014.09.010
- Fiedler, M., 10.1016/S0024-3795(03)00548-2, Linear Algebra Appl. 372 (2003), 325-331. (2003) Zbl1031.15014MR1999154DOI10.1016/S0024-3795(03)00548-2
- Garnett, C., Shader, B. L., Shader, C. L., Driessche, P. van den, 10.1016/j.laa.2015.07.031, Linear Algebra Appl. 498 (2016), 360-365. (2016) Zbl1371.15019MR3478567DOI10.1016/j.laa.2015.07.031
- Meulen, K. N. Vander, Vanderwoerd, T., 10.1016/j.laa.2017.11.002, Linear Algebra Appl. 539 (2018), 94-116. (2018) Zbl1380.15011MR3739399DOI10.1016/j.laa.2017.11.002
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.