On special Rees matrix semigroups over semigroups

Attila Nagy; Csaba Tóth

Commentationes Mathematicae Universitatis Carolinae (2023)

  • Volume: 64, Issue: 3, page 279-288
  • ISSN: 0010-2628

Abstract

top
We study the right regular representation of special Rees matrix semigroups over semigroups, and discuss their embedding in idempotent-free left simple semigroups.

How to cite

top

Nagy, Attila, and Tóth, Csaba. "On special Rees matrix semigroups over semigroups." Commentationes Mathematicae Universitatis Carolinae 64.3 (2023): 279-288. <http://eudml.org/doc/299227>.

@article{Nagy2023,
abstract = {We study the right regular representation of special Rees matrix semigroups over semigroups, and discuss their embedding in idempotent-free left simple semigroups.},
author = {Nagy, Attila, Tóth, Csaba},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {semigroup; Rees matrix semigroup; representation of semigroups},
language = {eng},
number = {3},
pages = {279-288},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {On special Rees matrix semigroups over semigroups},
url = {http://eudml.org/doc/299227},
volume = {64},
year = {2023},
}

TY - JOUR
AU - Nagy, Attila
AU - Tóth, Csaba
TI - On special Rees matrix semigroups over semigroups
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2023
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 64
IS - 3
SP - 279
EP - 288
AB - We study the right regular representation of special Rees matrix semigroups over semigroups, and discuss their embedding in idempotent-free left simple semigroups.
LA - eng
KW - semigroup; Rees matrix semigroup; representation of semigroups
UR - http://eudml.org/doc/299227
ER -

References

top
  1. Ayik H., Ruškuc N., Generators and relations of Rees matrix semigroups, Proc. Edinburgh Math. Soc. (2) 42 (1999), no. 3, 481–495. MR1721767
  2. Chrislock J. L., Semigroups whose regular representation is a group, Proc. Japan Acad. 40 (1964), no. 10, 799–800. MR0179275
  3. Chrislock J. L., 10.2307/2313623, Amer. Math. Monthly 74 (1967), no. 9, 1097–1100. MR0227295DOI10.2307/2313623
  4. Clifford A. H., Preston G. B., The Algebraic Theory of Semigroups. Vol. I, Math. Surveys, 7, American Mathematical Society, Providence, 1961. MR0132791
  5. Clifford A. H., Preston G. B., The Algebraic Theory of Semigroups. Vol. II, Math. Surveys, 7, American Mathematical Society, Providence, 1967. MR0218472
  6. Cohn P. M., 10.1112/jlms/s1-31.2.169, J. London Math. Soc. 31 (1956), no. 2, 169–181. MR0079007DOI10.1112/jlms/s1-31.2.169
  7. Croisot R., Demi-groupes simple inversifs à gauche, C. R. Acad. Sci. Paris 239 (1954), 845–847 (French). MR0064035
  8. Descalço L., Ruškuc N., 10.1080/00927870209342378, Comm. Algebra 30 (2002), no. 3, 1207–1226. MR1892597DOI10.1080/00927870209342378
  9. Howie J. M., An Introduction to Semigroup Theory, L. M. S. Monographs, 7, Academic Press, London, 1976. Zbl0355.20056MR0466355
  10. Kambites M., 10.1007/s00233-007-9016-6, Semigroup Forum 76 (2008), no. 2, 204–216. MR2377584DOI10.1007/s00233-007-9016-6
  11. Kehayopulu N., Tsingelis M., 10.1007/s00233-011-9346-2, Semigroup Forum 84 (2012), no. 3, 562–568. MR2917192DOI10.1007/s00233-011-9346-2
  12. Lawson M. V., Rees matrix semigroups, Proc. Edinburgh Math. Soc. (2) 33 (1990), no. 1, 23–37. MR1038762
  13. McAlister D. B., 10.1090/S0002-9947-1983-0694385-3, Trans. Amer. Math. Soc. 227 (1983), no. 2, 727–738. MR0694385DOI10.1090/S0002-9947-1983-0694385-3
  14. Nagy A., 10.1007/BF02573565, Semigroup Forum 46 (1993), no. 2, 187–198. MR1200213DOI10.1007/BF02573565
  15. Nagy A., Right commutative Δ -semigroups, Acta Sci. Math. (Szeged) 66 (2000), no. 1–2, 33–46. MR1768852
  16. Nagy A., Special Classes of Semigroups, Adv. Math. (Dordr.), 1, Kluwer Academic Publishers, Dordrecht, 2001. MR1777265
  17. Nagy A., A supplement to my paper “Right commutative Δ -semigroups", Acta Sci. Math. (Szeged) 71 (2005), no. 1–2, 35–36. MR2160353
  18. Nagy A., 10.1007/s00233-007-9027-3, Semigroup Forum 76 (2008), no. 2, 297–308. MR2377591DOI10.1007/s00233-007-9027-3
  19. Nagy A., 10.1007/s00233-012-9428-9, Semigroup Forum 87 (2013), no. 1, 129–148. MR3079776DOI10.1007/s00233-012-9428-9
  20. Nagy A., 10.1007/s10998-015-0094-z, Period. Math. Hungar. 71 (2015), no. 2, 261–264. MR3421700DOI10.1007/s10998-015-0094-z
  21. Nagy A., 10.1007/s10474-015-0578-6, Acta Math. Hungar. 148 (2016), no. 2, 300–311. MR3498533DOI10.1007/s10474-015-0578-6
  22. Nagy A., 10.1007/s10998-022-00454-w, Period. Math. Hungar. 86 (2023), no. 1, 37–42. MR4554111DOI10.1007/s10998-022-00454-w
  23. Nagy A., Nagy O., 10.12988/ija.2020.91248, International Journal of Algebra 14 (2020), no. 3, 163–169. DOI10.12988/ija.2020.91248
  24. Nagy A., Tóth C., On the probability that two elements of a finite semigroup have the same right matrix, Comment. Math. Univ. Carolin. 63 (2022), no. 1, 21–31. MR4445735
  25. Petrich M., Lectures in Semigroups, Math. Lehrbücher Monogr. I. Abt. Math. Lehrbücher, 29, Academie-Verlag, Berlin, 1977. MR0447437
  26. Petrich M., 10.1007/s00605-003-0040-7, Monatsh. Math. 141 (2004), no. 4, 315–322. MR2053656DOI10.1007/s00605-003-0040-7
  27. Rees D., On semi-groups, Proc. Cambridge Philos. Soc. 36 (1940), no. 4, 387–400. MR0002893
  28. Teissier M., Sur les demi-groupes ne contenant pas d'élément idempotent, C. R. Acad. Sci. Paris 237 (1953), 1375–1377 (French). MR0059902
  29. Tóth C., Right regular triples of semigroups, available at arXiv:2211.06600v1 [math.GR] (2022), 13 pages. MR4666108

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.