On the probability that two elements of a finite semigroup have the same right matrix

Attila Nagy; Csaba Tóth

Commentationes Mathematicae Universitatis Carolinae (2022)

  • Volume: 62 63, Issue: 1, page 21-31
  • ISSN: 0010-2628

Abstract

top
We study the probability that two elements which are selected at random with replacement from a finite semigroup S have the same right matrix.

How to cite

top

Nagy, Attila, and Tóth, Csaba. "On the probability that two elements of a finite semigroup have the same right matrix." Commentationes Mathematicae Universitatis Carolinae 62 63.1 (2022): 21-31. <http://eudml.org/doc/299273>.

@article{Nagy2022,
abstract = {We study the probability that two elements which are selected at random with replacement from a finite semigroup $S$ have the same right matrix.},
author = {Nagy, Attila, Tóth, Csaba},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {congruence; equivalence relation; probability; semigroup},
language = {eng},
number = {1},
pages = {21-31},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {On the probability that two elements of a finite semigroup have the same right matrix},
url = {http://eudml.org/doc/299273},
volume = {62 63},
year = {2022},
}

TY - JOUR
AU - Nagy, Attila
AU - Tóth, Csaba
TI - On the probability that two elements of a finite semigroup have the same right matrix
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2022
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 62 63
IS - 1
SP - 21
EP - 31
AB - We study the probability that two elements which are selected at random with replacement from a finite semigroup $S$ have the same right matrix.
LA - eng
KW - congruence; equivalence relation; probability; semigroup
UR - http://eudml.org/doc/299273
ER -

References

top
  1. Ahmedidelir K., Campbell C. M., Doostie H., 10.1142/S1005386711000769, Algebra Colloq. 18 (2011), Special Issue no. 1, 881–888. MR2860370DOI10.1142/S1005386711000769
  2. Clifford A. H., Preston G. B., The Algebraic Theory of Semigroups, Vol. I., Mathematical Surveys, 7, American Mathematical Society, Providence, 1961. MR0132791
  3. Dixon J. D., 10.1007/BF01110210, Math. Z. 110 (1969), 199–205. MR0251758DOI10.1007/BF01110210
  4. Dixon J. D., Pyber L., Seress Á., Shalev A., Residual properties of free groups and probabilistic methods, J. Reine Angew. Math. 556 (2003), 159–172. MR1971144
  5. Eberhard S., Virchow S.-C., 10.1007/s00493-017-3629-5, Combinatorica 39 (2019), no. 2, 273–288. MR3962902DOI10.1007/s00493-017-3629-5
  6. Gustafson W. H., 10.1080/00029890.1973.11993437, Amer. Math. Monthly 80 (1973), 1031–1034. MR0327901DOI10.1080/00029890.1973.11993437
  7. Howie J. M., An Introduction to Semigroup Theory, L. M. S. Monographs, 7, Academic Press, London, 1976. Zbl0355.20056MR0466355
  8. MacHale D., 10.1080/00029890.1976.11994032, Amer. Math. Monthly 83 (1975), no. 1, 30–32. MR0384861DOI10.1080/00029890.1976.11994032
  9. Nagy A., Special Classes of Semigroups, Advances in Mathematics (Dordrecht), 1, Kluwer Academic Publishers, Dordrecht, 2001. MR1777265
  10. Nagy A., 10.1007/s00233-012-9428-9, Semigroup Forum 87 (2013), no. 1, 129–148. MR3079776DOI10.1007/s00233-012-9428-9
  11. Nagy A., 10.12988/ija.2013.13012, Int. J. of Algebra 7 (2013), no. 1–4, 115–129. MR3039386DOI10.12988/ija.2013.13012
  12. Nagy A., 10.1007/s10998-015-0094-z, Period. Math. Hungar. 71 (2015), no. 2, 261–264. MR3421700DOI10.1007/s10998-015-0094-z
  13. Nagy A., 10.1007/s10474-015-0578-6, Acta Math. Hungar. 148 (2016), no. 2, 300–311. MR3498533DOI10.1007/s10474-015-0578-6
  14. Nagy A., Rónyai L., 10.12988/ijcms.2014.310115, Int. J. of Contemp. Math. Sci. 9 (2014), no. 1–4, 25–36. MR3158527DOI10.12988/ijcms.2014.310115
  15. Petrich M., Lectures in Semigroups, John Wiley & Sons, London, 1977. MR0466270

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.