On the probability that two elements of a finite semigroup have the same right matrix
Commentationes Mathematicae Universitatis Carolinae (2022)
- Volume: 62 63, Issue: 1, page 21-31
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topNagy, Attila, and Tóth, Csaba. "On the probability that two elements of a finite semigroup have the same right matrix." Commentationes Mathematicae Universitatis Carolinae 62 63.1 (2022): 21-31. <http://eudml.org/doc/299273>.
@article{Nagy2022,
abstract = {We study the probability that two elements which are selected at random with replacement from a finite semigroup $S$ have the same right matrix.},
author = {Nagy, Attila, Tóth, Csaba},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {congruence; equivalence relation; probability; semigroup},
language = {eng},
number = {1},
pages = {21-31},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {On the probability that two elements of a finite semigroup have the same right matrix},
url = {http://eudml.org/doc/299273},
volume = {62 63},
year = {2022},
}
TY - JOUR
AU - Nagy, Attila
AU - Tóth, Csaba
TI - On the probability that two elements of a finite semigroup have the same right matrix
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2022
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 62 63
IS - 1
SP - 21
EP - 31
AB - We study the probability that two elements which are selected at random with replacement from a finite semigroup $S$ have the same right matrix.
LA - eng
KW - congruence; equivalence relation; probability; semigroup
UR - http://eudml.org/doc/299273
ER -
References
top- Ahmedidelir K., Campbell C. M., Doostie H., 10.1142/S1005386711000769, Algebra Colloq. 18 (2011), Special Issue no. 1, 881–888. MR2860370DOI10.1142/S1005386711000769
- Clifford A. H., Preston G. B., The Algebraic Theory of Semigroups, Vol. I., Mathematical Surveys, 7, American Mathematical Society, Providence, 1961. MR0132791
- Dixon J. D., 10.1007/BF01110210, Math. Z. 110 (1969), 199–205. MR0251758DOI10.1007/BF01110210
- Dixon J. D., Pyber L., Seress Á., Shalev A., Residual properties of free groups and probabilistic methods, J. Reine Angew. Math. 556 (2003), 159–172. MR1971144
- Eberhard S., Virchow S.-C., 10.1007/s00493-017-3629-5, Combinatorica 39 (2019), no. 2, 273–288. MR3962902DOI10.1007/s00493-017-3629-5
- Gustafson W. H., 10.1080/00029890.1973.11993437, Amer. Math. Monthly 80 (1973), 1031–1034. MR0327901DOI10.1080/00029890.1973.11993437
- Howie J. M., An Introduction to Semigroup Theory, L. M. S. Monographs, 7, Academic Press, London, 1976. Zbl0355.20056MR0466355
- MacHale D., 10.1080/00029890.1976.11994032, Amer. Math. Monthly 83 (1975), no. 1, 30–32. MR0384861DOI10.1080/00029890.1976.11994032
- Nagy A., Special Classes of Semigroups, Advances in Mathematics (Dordrecht), 1, Kluwer Academic Publishers, Dordrecht, 2001. MR1777265
- Nagy A., 10.1007/s00233-012-9428-9, Semigroup Forum 87 (2013), no. 1, 129–148. MR3079776DOI10.1007/s00233-012-9428-9
- Nagy A., 10.12988/ija.2013.13012, Int. J. of Algebra 7 (2013), no. 1–4, 115–129. MR3039386DOI10.12988/ija.2013.13012
- Nagy A., 10.1007/s10998-015-0094-z, Period. Math. Hungar. 71 (2015), no. 2, 261–264. MR3421700DOI10.1007/s10998-015-0094-z
- Nagy A., 10.1007/s10474-015-0578-6, Acta Math. Hungar. 148 (2016), no. 2, 300–311. MR3498533DOI10.1007/s10474-015-0578-6
- Nagy A., Rónyai L., 10.12988/ijcms.2014.310115, Int. J. of Contemp. Math. Sci. 9 (2014), no. 1–4, 25–36. MR3158527DOI10.12988/ijcms.2014.310115
- Petrich M., Lectures in Semigroups, John Wiley & Sons, London, 1977. MR0466270
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.