Global solvability in the parabolic-elliptic chemotaxis system with singular sensitivity and logistic source
Czechoslovak Mathematical Journal (2024)
- Issue: 1, page 127-151
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topZhao, Xiangdong. "Global solvability in the parabolic-elliptic chemotaxis system with singular sensitivity and logistic source." Czechoslovak Mathematical Journal (2024): 127-151. <http://eudml.org/doc/299233>.
@article{Zhao2024,
abstract = {We study the chemotaxis system with singular sensitivity and logistic-type source: $u_t=\Delta u-\chi \nabla \cdot (u \nabla v/ v) +ru-\mu u^k$, $0=\Delta v-v+u$ under the non-flux boundary conditions in a smooth bounded domain $\Omega \subset \mathbb \{R\}^n$, $\chi ,r,\mu >0$, $k>1$ and $n\ge 1$. It is shown with $k\in (1,2)$ that the system possesses a global generalized solution for $n\ge 2$ which is bounded when $\chi >0$ is suitably small related to $r>0$ and the initial datum is properly small, and a global bounded classical solution for $n=1$.},
author = {Zhao, Xiangdong},
journal = {Czechoslovak Mathematical Journal},
keywords = {chemotaxis; singular sensitivity; global solvability},
language = {eng},
number = {1},
pages = {127-151},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Global solvability in the parabolic-elliptic chemotaxis system with singular sensitivity and logistic source},
url = {http://eudml.org/doc/299233},
year = {2024},
}
TY - JOUR
AU - Zhao, Xiangdong
TI - Global solvability in the parabolic-elliptic chemotaxis system with singular sensitivity and logistic source
JO - Czechoslovak Mathematical Journal
PY - 2024
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
IS - 1
SP - 127
EP - 151
AB - We study the chemotaxis system with singular sensitivity and logistic-type source: $u_t=\Delta u-\chi \nabla \cdot (u \nabla v/ v) +ru-\mu u^k$, $0=\Delta v-v+u$ under the non-flux boundary conditions in a smooth bounded domain $\Omega \subset \mathbb {R}^n$, $\chi ,r,\mu >0$, $k>1$ and $n\ge 1$. It is shown with $k\in (1,2)$ that the system possesses a global generalized solution for $n\ge 2$ which is bounded when $\chi >0$ is suitably small related to $r>0$ and the initial datum is properly small, and a global bounded classical solution for $n=1$.
LA - eng
KW - chemotaxis; singular sensitivity; global solvability
UR - http://eudml.org/doc/299233
ER -
References
top- Black, T., 10.3934/dcdss.2020007, Discrete Contin. Dyn. Syst., Ser. S 13 (2020), 119-137. (2020) Zbl1439.35486MR4043685DOI10.3934/dcdss.2020007
- Ding, M., Wang, W., Zhou, S., 10.1016/j.nonrwa.2019.03.009, Nonlinear Anal., Real World Appl. 49 (2019), 286-311. (2019) Zbl1437.35118MR3936798DOI10.1016/j.nonrwa.2019.03.009
- Fujie, K., 10.1016/j.jmaa.2014.11.045, J. Math. Anal. Appl. 424 (2015), 675-684. (2015) Zbl1310.35144MR3286587DOI10.1016/j.jmaa.2014.11.045
- Fujie, K., Senba, T., 10.3934/dcdsb.2016.21.81, Discrete Contin. Dyn. Syst., Ser. B 21 (2016), 81-102. (2016) Zbl1330.35051MR3426833DOI10.3934/dcdsb.2016.21.81
- Fujie, K., Senba, T., 10.1088/0951-7715/29/8/2417, Nonlinearity 29 (2016), 2417-2450. (2016) Zbl1383.35102MR3538418DOI10.1088/0951-7715/29/8/2417
- Fujie, K., Winkler, M., Yokota, T., 10.1016/j.na.2014.06.017, Nonlinear Anal., Theory Methods Appl., Ser. A 109 (2014), 56-71. (2014) Zbl1297.35051MR3247293DOI10.1016/j.na.2014.06.017
- Fujie, K., Winkler, M., Yokota, T., 10.1002/mma.3149, Math. Methods Appl. Sci. 38 (2015), 1212-1224. (2015) Zbl1329.35011MR3338145DOI10.1002/mma.3149
- Keller, E. F., Segel, L. A., 10.1016/0022-5193(70)90092-5, J. Theor. Biol. 26 (1970), 399-415. (1970) Zbl1170.92306MR3925816DOI10.1016/0022-5193(70)90092-5
- Kurt, H. I., Shen, W., 10.1137/20M1356609, SIAM J. Math. Anal. 53 (2021), 973-1003. (2021) Zbl1455.35269MR4212880DOI10.1137/20M1356609
- Lankeit, J., 10.1016/j.jde.2014.10.016, J. Differ. Equations 258 (2015), 1158-1191. (2015) Zbl1319.35085MR3294344DOI10.1016/j.jde.2014.10.016
- Lankeit, J., Winkler, M., 10.1007/s00030-017-0472-8, NoDEA, Nonlinear Differ. Equ. Appl. 24 (2017), Article ID 49, 33 pages. (2017) Zbl1373.35166MR3674184DOI10.1007/s00030-017-0472-8
- Nagai, T., Senba, T., 10.1016/S0362-546X(96)00256-8, Nonlinear Anal., Theory Methods Appl. 30 (1997), 3837-3842. (1997) Zbl0891.35014MR1602939DOI10.1016/S0362-546X(96)00256-8
- Osaki, K., Tsujikawa, T., Yagi, A., Mimura, M., 10.1016/S0362-546X(01)00815-X, Nonlinear Anal., Theory Methods Appl., Ser. A 51 (2002), 119-144. (2002) Zbl1005.35023MR1915744DOI10.1016/S0362-546X(01)00815-X
- Osaki, K., Yagi, A., Finite dimensional attractor for one-dimensional Keller-Segel equations, Funkc. Ekvacioj, Ser. Int. 44 (2001), 441-469. (2001) Zbl1145.37337MR1893940
- Stinner, C., Surulescu, C., Winkler, M., 10.1137/13094058X, SIAM J. Math. Anal. 46 (2014), 1969-2007. (2014) Zbl1301.35189MR3216646DOI10.1137/13094058X
- Tao, Y., Winkler, M., 10.1016/j.jde.2015.07.019, J. Differ. Equations 259 (2015), 6142-6161. (2015) Zbl1321.35084MR3397319DOI10.1016/j.jde.2015.07.019
- Tello, J. I., Winkler, M., 10.1080/03605300701319003, Commun. Partial Differ. Equations 32 (2007), 849-877. (2007) Zbl1121.37068MR2334836DOI10.1080/03605300701319003
- Viglialoro, G., 10.1016/j.jmaa.2016.02.069, J. Math. Anal. Appl. 439 (2016), 197-212. (2016) Zbl1386.35163MR3474358DOI10.1016/j.jmaa.2016.02.069
- Viglialoro, G., 10.1016/j.nonrwa.2016.10.001, Nonlinear Anal., Real World Appl. 34 (2017), 520-535. (2017) Zbl1355.35094MR3567976DOI10.1016/j.nonrwa.2016.10.001
- Winkler, M., 10.1016/j.jmaa.2008.07.071, J. Math. Anal. Appl. 348 (2008), 708-729. (2008) Zbl1147.92005MR2445771DOI10.1016/j.jmaa.2008.07.071
- Winkler, M., 10.1016/j.jde.2010.02.008, J. Differ. Equations 248 (2010), 2889-2905. (2010) Zbl1190.92004MR2644137DOI10.1016/j.jde.2010.02.008
- Winkler, M., 10.1080/03605300903473426, Commun. Partial Differ. Equqtions 35 (2010), 1516-1537. (2010) Zbl1290.35139MR2754053DOI10.1080/03605300903473426
- Winkler, M., 10.1007/s10231-019-00834-z, Ann. Mat. Pura Appl. (4) 198 (2019), 1615-1637. (2019) Zbl1437.35004MR4022112DOI10.1007/s10231-019-00834-z
- Winkler, M., 10.1515/anona-2020-0013, Adv. Nonlinear Anal. 9 (2020), 526-566. (2020) Zbl1419.35099MR3969152DOI10.1515/anona-2020-0013
- Winkler, M., 10.2422/2036-2145.202005_016, Ann. Sc. Norm. Super. Pisa, Cl. Sci. (5) 24 (2023), 141-172. (2023) Zbl7697296MR4587743DOI10.2422/2036-2145.202005_016
- Zhang, W., 10.3934/dcdsb.2022121, Discrete Contin. Dyn. Syst., Ser. B 28 (2023), 1267-1278. (2023) Zbl1502.35184MR4509358DOI10.3934/dcdsb.2022121
- Zhao, X., 10.1016/j.jde.2022.08.003, J. Differ. Equations 338 (2022), 388-414. (2022) Zbl1497.92037MR4471552DOI10.1016/j.jde.2022.08.003
- Zhao, X., Zheng, S., 10.1007/s00033-016-0749-5, Z. Angew. Math. Phys. 68 (2017), Article ID 2, 13 pages. (2017) Zbl1371.35151MR3575592DOI10.1007/s00033-016-0749-5
- Zhao, X., Zheng, S., 10.1016/j.jde.2019.01.026, J. Differ. Equations 267 (2019), 826-865. (2019) Zbl1412.35177MR3957973DOI10.1016/j.jde.2019.01.026
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.