Global solvability in the parabolic-elliptic chemotaxis system with singular sensitivity and logistic source

Xiangdong Zhao

Czechoslovak Mathematical Journal (2024)

  • Volume: 74, Issue: 1, page 127-151
  • ISSN: 0011-4642

Abstract

top
We study the chemotaxis system with singular sensitivity and logistic-type source: u t = Δ u - χ · ( u v / v ) + r u - μ u k , 0 = Δ v - v + u under the non-flux boundary conditions in a smooth bounded domain Ω n , χ , r , μ > 0 , k > 1 and n 1 . It is shown with k ( 1 , 2 ) that the system possesses a global generalized solution for n 2 which is bounded when χ > 0 is suitably small related to r > 0 and the initial datum is properly small, and a global bounded classical solution for n = 1 .

How to cite

top

Zhao, Xiangdong. "Global solvability in the parabolic-elliptic chemotaxis system with singular sensitivity and logistic source." Czechoslovak Mathematical Journal 74.1 (2024): 127-151. <http://eudml.org/doc/299233>.

@article{Zhao2024,
abstract = {We study the chemotaxis system with singular sensitivity and logistic-type source: $u_t=\Delta u-\chi \nabla \cdot (u \nabla v/ v) +ru-\mu u^k$, $0=\Delta v-v+u$ under the non-flux boundary conditions in a smooth bounded domain $\Omega \subset \mathbb \{R\}^n$, $\chi ,r,\mu >0$, $k>1$ and $n\ge 1$. It is shown with $k\in (1,2)$ that the system possesses a global generalized solution for $n\ge 2$ which is bounded when $\chi >0$ is suitably small related to $r>0$ and the initial datum is properly small, and a global bounded classical solution for $n=1$.},
author = {Zhao, Xiangdong},
journal = {Czechoslovak Mathematical Journal},
keywords = {chemotaxis; singular sensitivity; global solvability},
language = {eng},
number = {1},
pages = {127-151},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Global solvability in the parabolic-elliptic chemotaxis system with singular sensitivity and logistic source},
url = {http://eudml.org/doc/299233},
volume = {74},
year = {2024},
}

TY - JOUR
AU - Zhao, Xiangdong
TI - Global solvability in the parabolic-elliptic chemotaxis system with singular sensitivity and logistic source
JO - Czechoslovak Mathematical Journal
PY - 2024
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 74
IS - 1
SP - 127
EP - 151
AB - We study the chemotaxis system with singular sensitivity and logistic-type source: $u_t=\Delta u-\chi \nabla \cdot (u \nabla v/ v) +ru-\mu u^k$, $0=\Delta v-v+u$ under the non-flux boundary conditions in a smooth bounded domain $\Omega \subset \mathbb {R}^n$, $\chi ,r,\mu >0$, $k>1$ and $n\ge 1$. It is shown with $k\in (1,2)$ that the system possesses a global generalized solution for $n\ge 2$ which is bounded when $\chi >0$ is suitably small related to $r>0$ and the initial datum is properly small, and a global bounded classical solution for $n=1$.
LA - eng
KW - chemotaxis; singular sensitivity; global solvability
UR - http://eudml.org/doc/299233
ER -

References

top
  1. Black, T., 10.3934/dcdss.2020007, Discrete Contin. Dyn. Syst., Ser. S 13 (2020), 119-137. (2020) Zbl1439.35486MR4043685DOI10.3934/dcdss.2020007
  2. Ding, M., Wang, W., Zhou, S., 10.1016/j.nonrwa.2019.03.009, Nonlinear Anal., Real World Appl. 49 (2019), 286-311. (2019) Zbl1437.35118MR3936798DOI10.1016/j.nonrwa.2019.03.009
  3. Fujie, K., 10.1016/j.jmaa.2014.11.045, J. Math. Anal. Appl. 424 (2015), 675-684. (2015) Zbl1310.35144MR3286587DOI10.1016/j.jmaa.2014.11.045
  4. Fujie, K., Senba, T., 10.3934/dcdsb.2016.21.81, Discrete Contin. Dyn. Syst., Ser. B 21 (2016), 81-102. (2016) Zbl1330.35051MR3426833DOI10.3934/dcdsb.2016.21.81
  5. Fujie, K., Senba, T., 10.1088/0951-7715/29/8/2417, Nonlinearity 29 (2016), 2417-2450. (2016) Zbl1383.35102MR3538418DOI10.1088/0951-7715/29/8/2417
  6. Fujie, K., Winkler, M., Yokota, T., 10.1016/j.na.2014.06.017, Nonlinear Anal., Theory Methods Appl., Ser. A 109 (2014), 56-71. (2014) Zbl1297.35051MR3247293DOI10.1016/j.na.2014.06.017
  7. Fujie, K., Winkler, M., Yokota, T., 10.1002/mma.3149, Math. Methods Appl. Sci. 38 (2015), 1212-1224. (2015) Zbl1329.35011MR3338145DOI10.1002/mma.3149
  8. Keller, E. F., Segel, L. A., 10.1016/0022-5193(70)90092-5, J. Theor. Biol. 26 (1970), 399-415. (1970) Zbl1170.92306MR3925816DOI10.1016/0022-5193(70)90092-5
  9. Kurt, H. I., Shen, W., 10.1137/20M1356609, SIAM J. Math. Anal. 53 (2021), 973-1003. (2021) Zbl1455.35269MR4212880DOI10.1137/20M1356609
  10. Lankeit, J., 10.1016/j.jde.2014.10.016, J. Differ. Equations 258 (2015), 1158-1191. (2015) Zbl1319.35085MR3294344DOI10.1016/j.jde.2014.10.016
  11. Lankeit, J., Winkler, M., 10.1007/s00030-017-0472-8, NoDEA, Nonlinear Differ. Equ. Appl. 24 (2017), Article ID 49, 33 pages. (2017) Zbl1373.35166MR3674184DOI10.1007/s00030-017-0472-8
  12. Nagai, T., Senba, T., 10.1016/S0362-546X(96)00256-8, Nonlinear Anal., Theory Methods Appl. 30 (1997), 3837-3842. (1997) Zbl0891.35014MR1602939DOI10.1016/S0362-546X(96)00256-8
  13. Osaki, K., Tsujikawa, T., Yagi, A., Mimura, M., 10.1016/S0362-546X(01)00815-X, Nonlinear Anal., Theory Methods Appl., Ser. A 51 (2002), 119-144. (2002) Zbl1005.35023MR1915744DOI10.1016/S0362-546X(01)00815-X
  14. Osaki, K., Yagi, A., Finite dimensional attractor for one-dimensional Keller-Segel equations, Funkc. Ekvacioj, Ser. Int. 44 (2001), 441-469. (2001) Zbl1145.37337MR1893940
  15. Stinner, C., Surulescu, C., Winkler, M., 10.1137/13094058X, SIAM J. Math. Anal. 46 (2014), 1969-2007. (2014) Zbl1301.35189MR3216646DOI10.1137/13094058X
  16. Tao, Y., Winkler, M., 10.1016/j.jde.2015.07.019, J. Differ. Equations 259 (2015), 6142-6161. (2015) Zbl1321.35084MR3397319DOI10.1016/j.jde.2015.07.019
  17. Tello, J. I., Winkler, M., 10.1080/03605300701319003, Commun. Partial Differ. Equations 32 (2007), 849-877. (2007) Zbl1121.37068MR2334836DOI10.1080/03605300701319003
  18. Viglialoro, G., 10.1016/j.jmaa.2016.02.069, J. Math. Anal. Appl. 439 (2016), 197-212. (2016) Zbl1386.35163MR3474358DOI10.1016/j.jmaa.2016.02.069
  19. Viglialoro, G., 10.1016/j.nonrwa.2016.10.001, Nonlinear Anal., Real World Appl. 34 (2017), 520-535. (2017) Zbl1355.35094MR3567976DOI10.1016/j.nonrwa.2016.10.001
  20. Winkler, M., 10.1016/j.jmaa.2008.07.071, J. Math. Anal. Appl. 348 (2008), 708-729. (2008) Zbl1147.92005MR2445771DOI10.1016/j.jmaa.2008.07.071
  21. Winkler, M., 10.1016/j.jde.2010.02.008, J. Differ. Equations 248 (2010), 2889-2905. (2010) Zbl1190.92004MR2644137DOI10.1016/j.jde.2010.02.008
  22. Winkler, M., 10.1080/03605300903473426, Commun. Partial Differ. Equqtions 35 (2010), 1516-1537. (2010) Zbl1290.35139MR2754053DOI10.1080/03605300903473426
  23. Winkler, M., 10.1007/s10231-019-00834-z, Ann. Mat. Pura Appl. (4) 198 (2019), 1615-1637. (2019) Zbl1437.35004MR4022112DOI10.1007/s10231-019-00834-z
  24. Winkler, M., 10.1515/anona-2020-0013, Adv. Nonlinear Anal. 9 (2020), 526-566. (2020) Zbl1419.35099MR3969152DOI10.1515/anona-2020-0013
  25. Winkler, M., 10.2422/2036-2145.202005_016, Ann. Sc. Norm. Super. Pisa, Cl. Sci. (5) 24 (2023), 141-172. (2023) Zbl7697296MR4587743DOI10.2422/2036-2145.202005_016
  26. Zhang, W., 10.3934/dcdsb.2022121, Discrete Contin. Dyn. Syst., Ser. B 28 (2023), 1267-1278. (2023) Zbl1502.35184MR4509358DOI10.3934/dcdsb.2022121
  27. Zhao, X., 10.1016/j.jde.2022.08.003, J. Differ. Equations 338 (2022), 388-414. (2022) Zbl1497.92037MR4471552DOI10.1016/j.jde.2022.08.003
  28. Zhao, X., Zheng, S., 10.1007/s00033-016-0749-5, Z. Angew. Math. Phys. 68 (2017), Article ID 2, 13 pages. (2017) Zbl1371.35151MR3575592DOI10.1007/s00033-016-0749-5
  29. Zhao, X., Zheng, S., 10.1016/j.jde.2019.01.026, J. Differ. Equations 267 (2019), 826-865. (2019) Zbl1412.35177MR3957973DOI10.1016/j.jde.2019.01.026

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.